
 
 

NATIONAL AND KAPODISTRIAN UNIVERSITY OF ATHENS 
 

SCHOOL OF SCIENCE 
DEPARTMENT OF INFORMATICS AND TELECOMMUNICATION 

 
GRADUATE PROGRAM 

COMPUTER NETWORKING  
 

 
 

MASTER THESIS 
 
 

A STORM architecture for Fusing IoT data 

 
 

Dimitrios A. Zampouras 
 
 
 
 
 
 
 
 
 
 
 

Supervisor:  Hadjieftymiades Stathes, Associate Professor 
 

 
 
 
 
 
 
 
 

ATHENS 
 

FEBRUARY 2018 
  



 
 

ΕΘΝΙΚΟ ΚΑΙ ΚΑΠΟΔΙΣΤΡΙΑΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ 
 

ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ 
ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ 

 
ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ 

ΔΙΚΤΥΩΣΗ ΥΠΟΛΟΓΙΣΤΩΝ  
 
 
 

ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ 
 
 

Αρχιτεκτονική σύντηξης δεδομένων IoT στο STORM 

 
 

Ζαμπούρας Α. Δημήτριος 
 
 
 
 
 
 
 
 
 
 
 

Επιβλέπων: Χατζηευθυμιάδης Ευστάθιος, Αναπληρωτής Καθηγητής 
 

 
 
 
 
 
 
 
 

ΑΘΗΝΑ 
 

ΦΕΒΡΟΥΑΡΙΟΣ 2018 
  



MASTER THESIS 
 
 
 
 

A STORM architecture for Fusing IoT data 
 
 
 

Zampouras A. Dimitrios 

Α.Μ.: M1407 
 
 
 
 
 
 
 
 
 
 

Supervisor: Hadjieftymiades Stathes, Associate Professor  
 
 
 
 
 
 
 
 
 
 
 
 

 
EXAMINATION COMMITTEE: Dimitrios Varoutas, Associate Professor 

 
 
 
 
 
 
 
 
 

February 2018 
  



ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ 

 
 
 

Αρχιτεκτονική σύντηξης δεδομένων IoT στο STORM 
 
 
 

Ζαμπούρας Α. Δημήτριος 

Α.Μ.: Μ1407 
 
 
 
 
 
 
 
 
 

 
ΕΠΙΒΛΕΠΩΝ:  Χατζηευθυμιάδης Ευστάθιος, Αναπληρωτής Καθηγητής 

 
 
 
 
 
 
 
 
 
 
 
 
 

ΕΞΕΤΑΣΤΙΚΗ ΕΠΙΤΡΟΠΗ: Δημήτριος Βαρουτάς, Αναπληρωτής Καθηγητής 
 

 
 
 
 
 
 
 
 

Φεβρουάριος 2018 
  



ABSTRACT 

 
This master thesis presents a framework built on top of Apache Storm’s real-time 
distributed processing system that enables any experimenter to define abstract topologies 
from a pool of supported algorithms. Firstly a survey of existing processing engines is 
presented and then the implementation logic for the design of this framework. This master 
thesis aims to provide a complete system that is configurable with the use of specific DSL 
files that can be of use to any experimenter that would like to analyse incoming streams 
without specific programming knowledge.       
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ΠΕΡΙΛΗΨΗ 
 
Σκοπός της διπλωματικής εργασίας ειναι η δημιουργία μιας βιβλιοθήκης βασισμένη στο 
κατανεμημένο συστημα επεξεργασίας ροών σε πραγματικό χρόνο Apache Storm με 
σκοπό την δυνατότητα περιγραφής γράφων επεξεργασίας με την χρήση ενός συνόλου 
υποστηριζόμενων αλγορίθμων. Αρχικά αναφέρονται τα σύστηματα επεξεργασιας 
δεδομένων μεγάλης κλίμακας και στην συνέχεια αποτυπώνεται η προσέγγιση για τον 
σχεδιασμό της βιβλιοθήκης. Με την χρήση αρχείων περιγραφής ενδιάμεσης γλώσσας 
YAML στοχεύουμε στην υλοποίηση ενός συστήματος το οποίο θα μπορούσε να φανεί 
ιδιαίτερα χρήσιμο σε ερευνητές οι οποίοι θέλουν να αναλύσουν ροές δεδομένων χωρίς τις 
απαραίτητες προγραμματιστικές γνώσεις. 
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1. BIG DATA PROCESSING SYSTEMS 

 

The vision of an Internet of Things (IoT) has attracted the interest of researches and 
practitioners aiming to deliver innovative applications that improve aspects of our daily 
lives. Although, over the past decade, advances in hardware development, sensing 
capabilities and IoT software architectures have triggered important technical and 
commercial successes, challenges and opportunities persist as we move towards 
generic and scalable approaches for composing and interoperating existing IoT 
functionality. [1] 

By 2020, industry analysis estimates that 25 billion devices will be connected to mobile 
networks worldwide. Interconnected devices brimming with intelligence will monitor and 
support almost any aspect of our daily lives in order to enhance our interaction with the 
world around us. More and more houses and cities even adopt the Internet of Things 
paradigm by creating networks of connected devices measuring temperature, carbon 
dioxide emissions, electricity consumption and much more. 

 To cope with the increase of connected devices that will be part of IoT, a new level of 
wireless internet connectivity will be required. 5G is the next generation of wireless 
networks and it is envisioned to make devices able to emit at a higher data rate and 
cellular coverage will expand significantly. While still being in an early age of the 5G 
revolution, a lot of potential can be expected from such networks in terms of 
interconnected devices. The higher transmission data rates will enable mobile devices 
to send more bit of information to other devices, gateways, or cloud based 
infrastructures. Also the latency of the 5G networks is expected to be just a single 
millisecond, many times faster than 4G, and the increased reliability factor is something 
particularly important for industrial and mission critical IoT applications.  

Millions of interconnected devices and applications even now are continually generating 
a large amount of data that has high dimensionality and complex in structure. This kind 
of data generated from such systems is what we call big data, which heralds the era of 
massive automatic data collection and analysis. Traditional data analysis and storage 
techniques are inadequate to cope with the velocity and size of this data. [2] 

Big data is best understood when considering some of its properties: 

 Volume is the most obvious property of big data. Data is being generated every 
second from a multitude of sources. 

 Velocity refers to the pace at which data flows into a system. Any user interaction 
can produce output and information from numerous sources and the rate of flow 
produced of those sources might be really fast. 

 Variety that refers to the diversity of the data transmitted from the interconnected 
devices.  

Therefore big data are data sets produced by millions of devices, so voluminous and 
complex that traditional data processing application software proves to be inadequate to 
deal with them. Big data essentially challenges the every aspect of data manipulation 
from its collection, storage and analysis.  

Frequently the term big data tends to refer to the use of predictive analytics, user 
behaviour analytics and all kinds of other advanced analytics methods that are designed 
to able to cope with extreme datasets. 

Many tools exist that address the various characteristics of big data: 
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- Data processing tools that are used to perform some form of calculation and 
extract intelligence out of a data set 

- Data transfer tools that are used to gather and ingest data into the data 
processing systems. 

- Data storage tools used to store data sets during various stages of processing. 

Data processing tools fall into two primary approaches depending on how data is being 
processed and treated when inserted into a data processing system for analysis: 

- Batch processing. Technically batch processing is the execution of a series of 
jobs in a data processing system on a set or group of inputs, rather than a single 
input [3]. Batch processing is being used more frequently on inputs that we are 
not interested to analyse urgently, but there have been exceptions to this logic. 
Batch processing has some benefits mainly derived from its approach on 
handling incoming data, such as reduced system load(instead of repeating the 
execution for each input, the execution handles much more), it avoids idling 
computer resources, and keeps a high rate of utilization. The concept of batch 
processing is being shown on Figure 1. 

 

Results

Batches of data

Data is afterwards 
segmented into 

batches that can be 
quite large

Incoming data to the 
system from user 

generated events, log 
events, sensors etc.

Data is 
stored in the 
database for 
access at a 
later point

Data 
Storage

Batch Processor

The batch processor is 
responsible for analyzing the 

batches usually in a map 
reduce fashion

 

Figure 1 Batch processing systems. 

 

- Stream processing on the other hand is the exact opposite from batch processing 
in terms of data handling. A stream processing system continuously acts upon 
the incoming data and we require immediate availability of the results. A stream 
processing system sometimes might directly receive input from the sources while 
in a batch processing system the input is being stored in large files which are 
then divided into chunks for processing. Therefore unlike a batch processing 
system a stream processing system is somewhat online and continuous way of 
analysing the incoming data. However stream processing isn’t limited to working 
on one data point at a time. Windows are being used that contain multiple data 
points in many cases, which sometimes sacrifices some of the speed and 
availability of results because it adds an extra layer of latency over working on a 
single data point. Usually in streaming systems we keep the processing limits 
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within milliseconds, seconds and minutes at most. The concept of most Stream 
processing systems is depicted on Figure 2. 

 

On the next pages the most known tools for data processing are being presented. 

Incoming data to the 
system from user 

generated events, log 
events, sensors etc.

Stream Processor Results

Data is being 
processed 

individually, each time 
it enters the system

 

Figure 2 Stream processing systems 

 

1.1 Apache Hadoop  

Hadoop is the most known batch processing system. Hadoop is based on a job model 
called map – reduce. Map reduce is a programming model with an associated 
implementation for processing and generating large data sets. Any users using batch 
processing tools and specifically Hadoop specify a map function that processes key-
value pairs to generate intermediate key/value pairs and a reduce function that is 
responsible for merging all intermediate values.  Programs written in this functional style 
are automatically provisioned and executed on large clusters of commodity machines.  

One of Hadoop’s responsibilities is to take care of the details of partitioning the input 
data, schedule the execution across a set of machines, handle machine failures and 
manage the intercommunication between them [4]. Hadoop is designed to scale from 
single servers to thousands of machines, each offering local computation and storage. 
High availability is handled by Hadoop’s library in order to deliver a highly available 
service on top of a cluster of computers. [5]   

The core of Apache Hadoop consists of a storage part, known as Hadoop Distributed 
File System (HDFS),which is a distributed system able to deliver data with high 
throughput that handles replication and storage faults. Map reduce systems and 
Hadoop as well, highly leverage the notion of moving the computation to the 
data(instead of sending large files through the network) and uses the processing power 
of the system that has the data stored. Hadoop also uses Hadoop YARN, a framework 
for job scheduling and cluster resource management.  

The basic course of action that Hadoop undertakes is mostly the same with the previous 
figure. First the incoming data is stored on the distributed filesystem HDFS. Once 
batches of data are created a MapRedure process runs over each batch. [6] 

 

1.2 Apache Spark 
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Apache Spark is hybrid processing framework as well. It uses Hadoop’s YARN resource 
manager. Spark uses a system that allows caching of intermediate (or final) results in 
memory, an ability that is highly useful for processes that continuously and repeatedly 
run over the same data sets and can make use of the previous calculations stored in 
memory. Apache Spark ecosystem of libraries is being depicted in Figure 3. 

 

Figure 3 Spark ecosystem 

 

Therefore Spark is speedier that Hadoop because of the way it processes data, via in 
memory computation and processing optimization. It has a resilient distributed dataset 
format (RDD) that gives spark the ability to transparently store data in memory and send 
to disk only what’s important or needed [7]. 

Instead of operating in a MapReduce fashion, it operates on the data set on one fell 
swoop. The discrete steps of a map reduce job would be first to read the data from the 
cluster, then perform an operation, write the results perform the next operation etc. 
Spark, on the other hand, completes the full data analytics operations in-memory and 
almost real-time. Spark can be deployed in a variety of ways, provides native bindings 
for the Java, Scala, Python, and R programming languages, and supports SQL, 
streaming data, machine learning, and graph processing [8][9]. 

The structure of Spark when deployed in a cluster is shown on the Figure 4. The Driver 
program as shown is an application executed that is responsible for creating the 
SparkContext, which is responsible for coordinating the existing multiple client 
processes. Typically this SparkContext is connected to a Cluster Manager, especially 
when deployed on a cluster. Spark supports many Cluster Manager types such as the 
included Spark Standalone, Apache Mesos and Apache Hadoop YARN. The Cluster 
Manager is responsible for providing executors to applications as soon as a 
SparkContext has been created [10]. 
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Figure 4 Spark cluster architecture 

A worker node in the Spark system is essentially an executor process that is 
responsible for any computations. Spark also provides a stream processing library by 
essentially performing micro-batch processing and state management. 

Apache Spark is not so similar to Apache Storm real time stream processing system 
since it approaches each stream, or incoming flow of data as a micro-batch. Therefore it 
is more similar to Storm’s Trident framework. 

 

1.3 Apache Samza 

Apache Samza is a distributed real-time stream processing framework that uses 
Apache Kafka for messaging and Apache Hadoop YARN to provide resource 
management. It was developed by LinkedIn in order to create a system that would 
provide quicker results than a Hadoop system, since immediate analysis and 
computation was needed on the data. Samza’s architecture is developed to run on 
containers for executing jobs [11]. 

Samza is built on top of Kafka’s messaging system and is composed of three basic 
components:  [12] [13] 

- A streaming layer that is responsible for providing partitioned streams that 
are  replicated and durable 

- An execution layer that is responsible for scheduling tasks across the machines 
- A processing layer that is responsible for processing the input stream and 

applying transformations 

 

The architecture of Apache Samza is shown on the figure below (Figure 5). 
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Figure 5 Apache Samza layers and architecture 

 

Apache Samza also provides fault tolerance by restarting any containers that fail and 
then resuming processing on the streaming data.  

 

1.4 Kafka Streams 

Kafka Streams API is a library by Kafka that can perform stream processing on top of 
Kafka’s messaging queue.  It builds upon important stream processing concepts such 
as properly distinguishing between event time and processing time, windowing support, 
and simple yet efficient management and real-time querying of application state.  It 
provides an API that can do stateful stream processing (not microbatch). The main goal 
for this library of stream processing was to provide a processing framework without the 
additional operational complexity of other processing systems.  

In Figure 6 the Kafka Streams architecture is being depicted. Kafka Streams is a library 
that can be used for stream processing but also for handy transformations on the fly in 
order to emit to new topics, more suitable to the needs of the application [14]. 

A unique feature of the Kafka Streams API is that the applications you build with it are 
normal applications. These applications can be packaged, deployed, and monitored like 
any other application, with no need to install separate processing clusters or similar 
special-purpose and expensive infrastructure [15]. 

Much like other processing systems, Kafka-streams use the notion of a topology, or a 
processing graph with the use of two kinds of processors: the Source Processor and the 
Sink Processor. A source processor is a type of stream processor that produces an 
input stream from one or many Kafka topics by consuming messages from them and 
forwarding them to the next, down-stream processors.  

The Sink Processor is a processor that does not send data to any next processor, but is 
responsible for sending the received transformed messages to a specified Kafka topic. 
Essentially a Sink Processor is a terminating node.  On Figures 6 & 7 the architecture 
and a topology graph is being depicted. 
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Figure 6 Kafka Streams architecture 

Many more extra features are present in this library that essentially can leverage Kafka 
messaging service to be a stream processing engine that is simple to use and easy to  
deploy. [16] [17] 

 

Figure 7 Topology graph 
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1.5 Apache Flink 

Apache Fink is yet another open source system for distributed stream and batch 
processing that has support for scaling and offers guarantees for an exactly-once-
processing of the received inputs. The root of Apache Flink is StratoSphere, an open 
source research project for big data analytics. It is stateful and fault tolerant and can 
recover easily from failures and can process large a large volume of information with 
low latency.  

Flink makes use of the master-worker pattern to implement its architecture. It consists of 
two different element types, a Job Manager, the master, and one or more Task 
Managers, the workers. The Job Manager is responsible for receiving assignments for 
clients and is responsible to assign tasks and track the execution state of any of the 
workers. A heartbeat mechanism is used to ensure that the workers are available and 
no failures are present. The Task Manager is responsible to execute the tasks assigned 
by the Job Manager and exchange information between workers as needed. Each Task 
Manager also provides a number of processing slots to the cluster, which are used for 
parallelizing tasks. The number of slots can be configured, however it is recommended 
to use the same slots as the number of CPU cores in every Task Manager machine. 

It allows users freely process events from one or more streams, and use consistent fault 
tolerant state. In addition, users can register event time and processing time callbacks, 
allowing programs to realize sophisticated computations. 

The basic building blocks and Flink’s approach to stream processing are streams and 
transformations. Conceptually a stream is a (potentially never-ending) flow of data 
records, and a transformation is an operation that takes one or more streams as input, 
and produces one or more output streams as a result [18]. 

When executed, Flink programs are mapped to streaming dataflows that consist of 
streams and transformation operators. Each flow starts with one or more sources and 
ends in one or more sinks. Again, at this system the main concept is the creation of 
workflow topologies that represent the logic of the application and are depicted as 
directed acyclic graphs (DAGs). Special forms of circles are permitted with some special 
constructs. An example topology is being shown at Figure 8.  

 

Figure 8 Dataflow topology graph 
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Apache Flink is really close to Apache Storm and essentially provides stream 
processing in a similar fashion. Apache Flink has internal support for batch processing 
which Storm does not.  

We continue by describing the Apache Storm stream processing system, its architecture 
and its components. Apache Storm is currently one of the most prevalent stream 
processing systems with a quite active community. 
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2. APACHE STORM 

 

Apache Storm is a free and open source distributed real-time computation system. 
Storm can handle and process reliably unbounded streams of data [19]. Similar to what 
Hadoop used to do for batch processing, Apache Storm does for unbounded streams of 
data in a reliable manner. Storm is exceptionally fast with the ability to process over 
millions of records per second per node on a cluster of moderate size [20]. 

Generally Storm is a tool that fits in the big data toolbox and offers a way of processing 
incoming sources of information using incremental functions, something that most batch 
big data systems such as Hadoop can’t, and offers a variety of fundamental properties 
that make it an attractive option. First of all Storm can be applied in a wide variety of 
cases and works well with multiple existing big data technologies. Secondly, it offers 
scalability since it provides an easy way to break down work using a number of threads, 
using multiple JVM’s only by changing some configuration. Additionally it guarantees 
that incoming data will surely be processed, and is robust. Last but not least, Storm 
offers the way to implement many components in many programming languages, can 
be run entirely on a Java Virtual Machine (JVM) or on a cluster making development on 
this system easier [21]. 

 

2.1 Storm Core Concepts 

Each of Storm’s internal components is responsible for carrying out a specific task in 
Storm. The work is delegated to different types of components that are each 
responsible for a specific processing task.  

The main component responsible for delivering data into the platform for processing is a 
spout. Each spout then passes the data to a component called a bolt, which applies 
some kind on operation on the incoming data, a transformation in some way. Each bolt 
can pass the processed information to another bolt for further processing, can stop the 
line of processing by being the last bolt and presenting the end results or can even store 
in some database the refined data [22]. 

The main data type that is being transferred between spouts and bolts, between bolts 
also is what Storm calls a tuple. A tuple is the object that is responsible for 
encapsulating any data being sent between the components (from now on when 
referring to the word components of Storm we mean that it’s either a spout or a bolt).  

Starting from a spout and the following bolts that are chained essentially we describe to 
storm a logical graph of computation which is the logic of how we would like to process 
any incoming data by chaining bolts and spouts. Therefore starting from spouts and 
then connecting them with bolts a directed acyclic graph (DAG) is being created with 
each node being a component of Storm. This is called a storm topology and is basically 
the logic of our real-time application [23]. 

 Typically spouts can be found only at the beginning of such graph, since they are 
responsible for fetching the data into our system. Following are the bolts which as 
already stated perform some kind of computation on each incoming data. In Figure 9 an 
abstract topology graph is being depicted with Spouts (valves) and Bolts (water drops). 
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Figure 9 Storm topology - Spouts and Bolts 

 

By packaging and supplying the topology to the Storm cluster, two components of 
Storm are being used to deploy and run the topology: The master node and worker 
nodes. The master node is being called Nimbus, whose task is to distribute effectively 
the code around the cluster, by assigning tasks to each worker node while at the same 
time monitoring their throughput and failures. Next to the master node, Storm contains a 
cluster of Apache Zookeeper nodes. Those nodes are essentially offering coordination 
of the distributed resources and applications as a service to the Storm ecosystem. 
Zookeeper service essentially knows the state of a topology as well as the state of the 
master and Supervisor nodes (worker and Supervisor nodes are explained below). 
Zookeeper also acts as a transmitter of all communication between the other two 
stateless node types. 

Worker nodes run a daemon called Supervisor, which is responsible for executing its 
assigned task, a portion of the topology. In order to keep an overview about the state of 
all Supervisor daemons, a heartbeat mechanism is used. Consequently, each 
Supervisor periodically sends a heartbeat signal to the master node as well as 
information about possibly free resources. The main task of a Supervisor is spawning 
worker processes based on the instructions it gets from the Nimbus and checking the 
condition of the created workers using again a heartbeat mechanism. In case any failure 
occurs the Supervisor is responsible for restarting the failed worker process.  

Each worker spawns a Java Virtual Machine (JVM) and is responsible for executing a 
part of a topology. Simply put, a topology is not a new concept, is has already been 
mentioned in previous systems and essentially the idea is the same; a topology is 
defined as “a directed graph where the vertices represent computation and the edges 
represent the data flow between computation components”. A topology in Storm can run 
on many worker nodes across different machines or workers [24]. 

The system components of Storm are being depicted in Figure 10 below.  
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Figure 10 Master and worker nodes 

 

Since Storm offers the ability to replay any failed data that was not correctly processed 
by the cluster and in order to orchestrate the worker nodes apache Zookeeper is being 
used for state management. The use of Zookeeper enables the worker nodes to be 
stateless and this gives them the ability to restart and attempt to overcome any failure 
without affecting the entire health of the system.  

There are mainly two ways we can deploy a Storm topology depending on our needs: 

- Local Mode, where the entire Storm topology is being run on a single JVM 
therefore on a single machine. This mode is mainly being used for development 
and debugging because it provides the easiest way to see all the components of 
our described topology working together on a single machine.  

- Remote Mode, where we have to submit our created topology to the Storm 
cluster, which is then being passed to the Nimbus master node in order to be 
disseminated into smaller tasks into the worker machines. Remote mode is 
equivalent to the production mode of our application, meaning that we won’t be 
able easily to check every machine and debug the topology in case of failures, 
but this deployment will be faster and able to cope with extremely large 
workloads. It is considered best practice to any system under development to be 
tested on a local deployment before shipping the application to production. 

 
Both deployment modes are supplementary and needed in order to create faultless and 
robust applications. Each mode needs different configuration and packaging of the 
application to be able to run. For example when deploying in local mode the entire 
Storm library must be packaged alongside the application creating a fat – jar or uber – 
jar as it is being called in order to run on the JVM of our machine. On a cluster this is 
not needed. The developer of the application needs to see through this to make it 
possible, otherwise problems occur. 

Following is the description of each component of Storm in much more detail. 
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2.1.1 Topologies 

A topology is essentially a graph of computation where each node represents some 
individual computation and the edges connecting the graph nodes essentially represent 
the data being passed between them. This topology is declared by defining the 
connection for each component participating in the graph and thus forming a directed 
graph. Connections are being formed between pairs of components(i.e. a spout sending 
data to more than one bolt will be participating in two connections, two streams by 
defining a type of grouping) by having each component connected to other components 
a graph is being created starting from spouts. Figure 11 shows a topology of spouts and 
bolts. 

 

  

After the topology has been created in java code as explained above it is then being 
shipped to two available modes of execution, remote or local. All it is needed to declare 
a topology is a java main class or essentially any class that can produce an object of 
apache.storm.Topology. Many aspects of the topology can be tweaked via a 
configuration object available that is being included in the description of the topology. 
Using this configuration class the developer can override existing configuration, but also 
can insert his own objects, and retrieve it at each component of the topology since this 
configuration object is being passed to every component participating in the 
computational graph.  

 

2.1.2 Tuples  

Each node participating in the topology graph sends data between one another in the 
form of tuples. When a tuple is being sent from a component to another component we 

Figure 11 Example of a computational graph - A 
topology 
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say that this tuple is emitted. A tuple is essentially a wrapper of objects, which defines 
an ordered list of objects, or values and each value is assigned a name. To put it simply 
a Tuple is a list that can be accessed as a map as well, but it is not a map structure. 
Therefore we can access each value by name or by its index. Each element contained 
in the tuple can be of any type since essentially treats any contained value as a 
java.lang.Object and Storm provides mechanisms for accessing the values within this 
list by using helper functions such as getValueField(String), which accesses the list 
map-like trying to get a value by its fieldName or getValue(int) to get a value by its 
positional index. Extra helper functions exist that resolve to all of the primitive types by 
casting value such as getInt(int), which fetches the value and casts it to the 
corresponding primitive contained in the function name. The structure of a Storm tuple 
is being shown on Figure 12 [25] [21]. 

 

value4value3value2value1  . . .
name4name3name2name1

Each value in the tuple is 
assigned a name, but the name 

does not actually get passed 
along with each tuple.

A tuple is a list of values, with 
names for each member

 

                                 Figure 12 A Storm tuple 

 

Since the contained values of the tuple are essentially java Objects are dynamic and 
they don’t need to be declared. But Storm needs to know how to able to serialize and 
deserialize each value in order to be able to send them between the nodes of a 
distributed topology. Primitive types are already supported but for a custom object or 
type a custom serializer might be needed to be registered. When a custom serializer is 
needed but is not present Storm falls back to standard Java serializer. 

One important aspect of Storm’s tuples is that they are dynamic and there is no need for 
defining any type. As Nathan Marz, one of the founders of Storm has stated, this 
technique of dynamic tuples lifts off many of the complexity and annotations needed to 
type-check each contained value as happens with  other big data processing systems. 

This is based on the approach that since the creator of the stream is the user and 
therefore he is the creator of each tuple on every stream, he should know how each 
tuple defined at each step and what dynamic types and fields does it contain [26]. 
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2.1.3 Streams 

The core abstraction in Storm is the stream. A stream is an unbounded sequence of 
tuples that is processed and created in parallel in a distributed fashion. Streams are 
defined with a schema that names the fields in the stream's tuples. The basic 
components that are responsible for doing any kind of stream transformations are 
spouts and bolts.  

Stream-wise a spout is responsible for fetching data into the system, and bolts are 
responsible for applying some sort of computation,  but both are also  responsible for 
creating streams, that are the edges of the topology graph and essentially describe the 
a path from one node to the other. To define a stream all we need is to give it a name or 
id(otherwise the name “default” will be used) and define which values and fieldnames 
each tuple emitted by this stream is going to contain. Therefore each component of a 
Storm’s topology receives one or many streams connections, computes and transforms 
it and emits to one or many streams.  

The declaration of the stream happens on each component with the 
OutputFieldsDeclarer object which handles new stream definitions with fields and has 
convenience methods for declaring a single stream without specifying an id. In this 
case, the stream is given the default id of "default" [26] [23]. 

 

2.1.4 Spouts 

A spout is responsible for fetching data that in the topology. Usually the incoming data 
would be from external source of information more frequently from a message queue, 
but the external source and how the data are being fetched into the system is 
completely left out to the user for implementation. Therefore spouts can get data from 
many sources and Storm provides some connectors for the most used and frequent 
sources of external information(for example connectors for kafka, drpc spouts, kestrel 
queue, feed spout connector etc.). Spouts are not responsible for processing any of the 
incoming data. They simply act as a source of streams, reading from a data source and 
emitting tuples to the next type of node in a topology which is the bolt.  

Each spout can be configured to emit to many streams as long as we call the method 
declareStream on the on the OutputFieldsDeclarer and specify the stream we would like 
to emit to and declare the field labels its tuples are going to contain. Emitting each tuple 
is possible by calling the method emit on the SpoutOutputCollector  object and 
specifying one of the declared streams. The tuple emitted on each stream should match 
the number of fields declared for this stream. 

The main method on a spout component is the emit method. When this method is called 
Storm is requesting that the Spout emit tuples to the output collector. This method 
should be non-blocking, so if the Spout has no tuples to emit, this method should return 
[27]. 

 

2.1.5 Bolts 

Unlike Spouts, whose purpose is to fetch the data into the system, bolts are responsible 
for receiving tuples, performing some kind of computation or transformation and then 
optionally to emit a new tuple to one or many output streams. Bolts can do anything 
from filtering, functions, aggregations, joins, communicate with databases and more.  
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Bolts can do simple stream transformations. Doing more complex stream 
transformations often requires multiple steps and as a consequence multiple bolts. It is 
considered best practice when defining tasks for bolts to assign to them a small task 
rather than more complex ones and create more bolts that handle portion of the task.  

Bolts generally can emit to more than one stream. To do so all we need to do is to 
declare multiple streams with the use of declareStream method of the 
OutputFieldsDeclarer and specify to which stream we would like to emit to using the 
emit method on the OutputCollector .  

The main method in bolts is the execute method which takes in as input a new tuple. 
Bolts emit new tuples using the OutputCollector object like spouts do. Bolts must call 
the ack method on the OutputCollector for every tuple they process so that Storm 
knows when tuples are completed.  

There are multiple implementations of Bolt’s base class in apache Storm and each one 
is offering a different type of Bolt behavior depending on its task. Therefore there are 
bolts that connect to specific types of databases like MongoDB, bolts that make it easier 
to interact with a Hadoop YARN filesystem and numerous others.  

Each of the bolts described so far are bolts that receive one tuple at a time, even when 
getting tuples from multiple streams, and for each tuple arriving the execute method is 
being called.  

There is however the need in such stream processing systems to support windowing 
since it’s one of the most frequently used processing methods on streams of data. 
Storm provides windowing support so that the user can configure a sliding or tumbling 
window based on some time or count configuration. The user therefore can specify a 
windowed bolt that will fire up its execute method only when the window configuration 
specifies to do so, essentially applying transformations  to an array of tuples, those that 
were received from the previous invocation of the window up until the next. The core 
structure of the windowed bolts is not the tuple, as was the case with simple bolts. A 
windowed bolt’s execute method receives a TupleWindow object that is actually a list of 
tuples. Again Storm provides helpful functions to support operations within the 
windowed bolt such as getNew()  which is a method that returns the tuples that were not 
in the previous invocation of the window, and other methods as well. What is also really 
helpful is that a time based window can be configured to measure the time from a 
timestamp field present in the each tuple arriving in the window and not only on the time 
that the system received the tuple. This can be used to assert time deltas of the actual 
data on the stream at the time the timestamp was taken [28]. 

 

2.1.6 Stream Groupings 

A stream grouping is a way of defining how the tuples are sent between instances of 
spouts and bolts as shown in Figure 13. As we have already mentioned Storm is a 
scalable system among many other things and when defining the parallelism for a 
component there are some cases where we would like to differ our way of emitting 
tuples so that the policy for sending tuples might change as we see fit. For example if 
we would like to count the occurrence of a word in a specific bolt of our topology and we 
would like many instances of the bolt there are two approaches we might think of.  

One would be to have every bolt instance count the occurrence of each word but since 
there are many instances of each bolt and each instance of the bolt receives many 
words, there might be counts of the same word on different instances. So after we count 
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the occurrences of the same word for each bolt instance, then we should give all those 
counts of the same word to someone who will add them up producing the final count of 
the word. This is much like a map reduce job. The policy or grouping of sending tuples 
to each instance of a component at random is being called shuffle grouping. This type of 
grouping is used whenever we don’t care of who the recipient might be because each 
instance of the bolt is able to perform the job. Using a shuffle grouping will guarantee 
that the tuples will be distributed randomly to the recipients guaranteeing that each 
instance will receive a relatively equal number of tuples. 

Another approach would be to keep sending any occurrence on the same word to only 
one recipient. When receiving a word we haven’t seen before we could randomly 
choose one instance to receive this tuple but from now on any subsequent same words 
that will show up are going to be sent to the same instance of the bolt. This type of 
grouping is called fields grouping. Using this approach the presence of a reducer, 
someone who would receive all the word counts in order to sum them up is not needed. 
This type of grouping is very useful in situations like these.  

 

Figure 13 Shuffle grouping and parallelism in Storm 

 

 Other types of grouping exist covering many situations where a different approach is 
needed when emitting tuples from one component to another.  These are listed below: 

- Fields grouping, where he stream is partitioned by the fields specified in the 
grouping. For example, if the stream is grouped by the "user-id" field, tuples with 
the same "user-id" will always go to the same task, but tuples with different "user-
id"'s may go to different tasks. 

 

- Partial key grouping, where the stream is partitioned by the fields specified in the 
grouping, like the Fields Grouping, but are balanced between the downstream 
bolts, which provides better utilization of the resources especially when the 
incoming data is skewed. By using this type of grouping in certain scenarios, we 
could improve throughput and latency and even achieving reduced imbalance by 
orders of magnitude and in some cases even to 45% [29].  
 

- All grouping, where the stream is replicated across all the bolts tasks. 
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- Global grouping, where the entire stream goes only to a single one of the bolt’s 
tasks(the one with the lowest id) 
 

- None grouping, when we don’t care how the stream is group which is equivalent  
with the shuffle grouping with plans to modify it so that bolts with none groupings 
wiil execute in the same thread as the bolt or spout they subscribe from (when 
possible). 
 

- Direct grouping, where the producer of tuples of the stream that is grouped this 
way, decides which task of the consumer will receive this tuple. This is only 
available for “direct” streams, streams that we have not given them any name. 
This kind of grouping requires the use of different emit methods such as 
emitDirect. A bolt can get the task id of its consumers by using the topology 
context. 
 

- Local or shuffle grouping, where if the target bolt has one or more tasks in the 
same worker process, tuples will be shuffled to just those in-process tasks. 
Otherwise,it acts like a normal shuffle grouping [23][30]. 

 

2.1.7 Parallelism in Storm 

Storm has support for scaling the components of a topology and this is one of the great 
advantages it provides. When designing a topology Storm offers many ways you can 
tune the scaling options it provides. In any case if we choose not to change any of the 
turning knobs of scaling the topology will still work, but it will run more like in a linear 
way. This could be desirable in some cases, not any application of Storm should be 
scaled, after all this is dictated by our workload. In any case if the incoming streams 
send a really large volume of data, then scaling is essential for handling all those data.  

 

2.1.8 Parallelism Hints 

Storm offers when declaring a component as part of a topology the ability to provide a 
hint, on how many instances of this component should the Storm consider to create.  

builder.setSpout(“word-spout”, new WordSpout(), 4); 
 

While the setSpout method can be called with only two parameters, when we would like 
to indicate our level of parallelism we should call the same function with an extra 
argument, a number, indicating how many same instances of this component we would 
like Storm to create for us. Otherwise the default would be one. The same parallelism 
hint can be provided in the bolt declaration process: 

builder.setBolt(“count-bolt”, new WordCount(), 10 );  
 

It is evident that the more instances of a bolt we provide, the more quicker and efficient 
our topology will be when handling increased workload. At the same time the complexity 
of our application increases and more intricate grouping other than shuffle grouping 
might be required.  It is always important to have in mind, especially when designing a 
topology, that it might need to scale at some point and even when we have indicated to 
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Storm that we would like only one instance per component, we should always consider 
that this might change, with the simple addition of an extra number. Therefore it is 
important to always have in mind that each component should be able to work well in a 
parallel fashion. 

 

2.1.9 Executors and tasks 

Up until now we have discussed about components and how can they be scaled using 
the parallelism hint. However these components have to run somewhere and those are 
the worker nodes. The worker node as we have stated is responsible for executing a 
portion of the topology, some subset of the spouts and bolts, which executes on its 
JVM. A worker node is responsible for running executors which are essentially a thread 
of execution on the JVM. Executors therefore are threads that are being spawned by a 
worker process. Keep in mind that worker nodes might also be executing other 
executors that belong to other topologies deployed in the storm cluster. Each worker 
node is not necessarily using all of its resources for executing a portion of one topology 
deployed. Figure 14 further explains this. 

 

Figure 14 Worker processes, executors and tasks 

 

Tasks are essentially the instances of spouts and bolts running within a thread of 
execution, on the executor. Therefore tasks perform the actual data processing. Each 
component implemented in the topology code is being executed as many tasks across a 
cluster. The number of tasks for a component is always the same throughout the 
lifetime of the topology, Storm doesn’t support auto scaling of tasks, but the number of 
executors (threads) might change over time. At almost any time the number of 
executors will be less or equal to the number of tasks. By default the number of 
executors and tasks is set to be the same (Storm will run one task per thread) but this 
can be varied. [31][21][32] 

When specifying the parallelism hint we actually vary the initial number of executors of a 
component. 

To sum up what we have stated so far: 
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- Each worker process can run one or more executors, essentially threads, where 
each executor is a thread spawned by the worker process 

- Each executor runs one or more tasks of the same component 
 

We can increase the number of workers (JVMs) by specifying it on the configuration 
class provided by Storm: 
 

TopologyBuilder builder = new TopologyBuilder(); 

Config config = new Config(); 

config.setNumWorkers(2); 

… 
 

Adding new workers comes at a cost: additional overhead for a new JVM. This example 
adds an additional worker without additional executors or tasks, but to take full 
advantage of this feature, Storm developers must add executors and tasks to the 
additional JVMs [33]. We can increase the parallelism by increasing the number of 
executors with the parallelism hint: 

Config config = new Config(); 

TopologyBuilder builder = new TopologyBuilder(); 

builder.setSpout(MY_SPOUT_ID, mySpout); 

builder.setBolt(MY_BOLT1_ID,myBolt1,2) 
        .shuffleGrouping(MY_SPOUT_ID); 

builder.setBolt(MY_BOLT2_ID,myBolt2) 
        .shuffleGrouping(MY_SPOUT_ID); 
 

This code sample assigns two executors to the single, default worker for the specified 
topology component, MyBolt1, as the following figure(Figure 15) illustrates. 
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Figure 15 Defined parallelism 

 

The number of tasks can also be increased with the method setNumTasks(int) which is 
available for spouts and bolts: 

Config config = new Config(); 

TopologyBuilder builder = new TopologyBuilder(); 

builder.setSpout(MY_SPOUT_ID, mySpout); 

builder.setBolt(MY_BOLT1_ID,myBolt1) 
               .setNumTasks(2) 
               .shuffleGrouping(MY_SPOUT_ID); 

builder.setBolt(MY_BOLT1_ID,myBolt2) 
               .shuffleGrouping(MY_SPOUT_ID); 
 

This code sample assigns two tasks to execute MyBolt1, as the following figure 
illustrates. This added parallelism might be appropriate for a bolt containing a large 
amount of data processing logic. However, adding tasks is like adding executors 
because the code for the corresponding spouts or bolts also changes. 

The defined parallelism of this code section is depicted on Figure 16. 
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Figure 16 Increased number of tasks 

 

And if we try to put them all together: 

Config conf = new Config(); 

conf.setNumWorkers(2); // use two worker processes 

topologyBuilder.setSpout("blue-spout", new BlueSpout(), 2); // set  
parallelism    //hint to 2 

topologyBuilder.setBolt("green-bolt", new GreenBolt(), 2) 

               .setNumTasks(4) 

               .shuffleGrouping("blue-spout"); 

topologyBuilder.setBolt("yellow-bolt", new YellowBolt(), 6) 

               .shuffleGrouping("green-bolt"); 

StormSubmitter.submitTopology("mytopology",conf,topologyBuilder.create
Topology() ); 
 
The derived topology of this code section is being shown below on Figure 17. 
 
Storm also offers the feature to change the number of worker processes and of 
executors without restarting the cluster or the topology. This feature is called 
rebalancing. There two ways to rebalance the topology, from the Storm web UI, or the 
Storm CLI tool. 
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Figure 17 Derived parallelism 

 

 

Generally Storm is a really powerful stream processing engine with the ability to fine 
tune many aspects of the system making it really appealing to big data industries. It 
offers an integrated and versatile system and approach that can handle stream 
processing in a real-time fashion. In the computing industry such a tool can be used 
effectively to monitor real time feed from various sensor platforms and networks, such 
as Twitter or Facebook. 

The complexity to understand and express a way to process incoming data in such 
systems many times is derived from the way those systems were designed. In order for 
all those systems to be able to offer a really adaptive way to work over the incoming 
data sometimes makes them too complex for users to understand. Users with a different 
scientific background experience this at much greater extend.  

With the upcoming revolution of Internet of Things that inevitable produce a really large 
volume of information a set of tools combined with a stream processing system could 
potentially provide a nice abstraction from the internal turning knobs of such a system. 
Data scientists could benefit from such a tool that could simplify and present a 
configurable and more human understandable way to work with incoming data, but 
other users as well.  

We aim to provide such an abstraction over Storm and to implement a framework so 
that the user would be able to choose from a set of defined algorithms, essentially a 
workflow, how he would like the system to analyze the incoming information, without the 
need to know any programming languages. Usually when performing stream or event 
analysis there are certain algorithms you would like to use in order to process such 
information.  
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Our goal would be for the user to describe a topology, a processing workflow, much like 
the topology described in Storm by using a DSL language for chaining algorithms of his 
choice.  

In the next sections we will describe how such a similar system was previously 
designed, what was it based upon and how eventually we started our implementation of 
this framework as well as the main problems we encountered. 
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3. FUSION BOX AND CONTEXTORS 

 

This section is about the implementations and the creation of the fusion box, an engine 
implemented to enable processing and consolidating data from heterogeneous sources. 
This engine enables the integration and interpretation of different types of data sources, 
with the use of multiple algorithmic flows according to these sources. This platform aims 
to shift the complexity that comes when coping with heterogeneous streams , perform 
complex operations efficiently, enable the customization of the middleware processing 
according to specific requirements of a wide spectrum of application scenarios and 
allow the creation of complex workflows.  

To enable this engine to adapt and uphold all those requirements a workflow processing 
engine has been built around basic blocks named contextors that perform autonomous 
algorithmic steps.  

The theory of contextors (Coutaz and Rey 2002) describes a contextor as an abstract 
functional unit which defines some outbound data and a single outgoing flow, which is a 
product of the contextor’s functional core. The core of the contextor is what essentially 
differentiates on contextor from another by defining its behaviour; its logical core. The 
core of a contextor consists of an implemented algorithm that is used for transforming 
the inbound flows to a specific outbound glow. This outbound flow then is being used as 
an input to a next contextor(s) and thus enables the creation of complex workflow 
structures. A contextor is being shown on Figure 18. 

 

Figure 18 A contextor 

The Fusion Box architecture is being based to the provisioning of the necessary 
middleware services in order to support the full lifecycle of a contextor. The Fusion Box 
therefore acts as a sandbox for deploying and running complex data processing 
workflows that are being composed of multiple contextors. The Fusion Box also 
provides all the necessary infrastructure services to enable a) the exchange of 
information between the contextors through a messaging framework b) the dynamic 
deployment and provisioning of workflows c) The dispatching of the output produced by 
the workflows either in the same FusionBox or outside of it. 

The network module of the FusionBox handles information flows from external data 
sources that have been selected as inputs to a specific data processing workflow. 
Essentially the network module is responsible for providing the data sources needed to 
the workflows and to the contextors.  

The data processing engine (DPE) comprises the application layer of the FusionBox 
and provides the appropriate runtime environment for all workflows. As already stated 
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the structural structural elements of the workflow graph are instances of the FusionBox 
contextor, where a specific algorithm is encapsulated and runs within each instance.  

The operation of each contextor is completely event based, and is triggered by the 
reception of a new data element on any of its data-in channels.  

There a number of similarities between the FusionBox engine and how Apache Storm 
handles data processing. A contextor in its abstract form can be correlated with a bolt in 
Storm in a logical sense, since both of them are the logical computational unit that 
support the framework. A bolt is not the same as a contextor, each bolt in storm is 
essentially a thread running, while a contextor is a java bean. This gives Storm the 
ability to scale up its number of threads corresponding to a specific bolt definition but at 
the same time a more sophisticated data management framework is required for 
supporting thread-like computational units( fields grouping etc.). Stateless algorithms or 
execution logic can greatly be enhanced by Storm’s approach.  

Spouts in storm are essentially responsible for feeding any kind of data into the system 
much like the Network Module of the Fusion Box does. A spout’s implementation is 
being left to the user as he can effectively define and program the logic of the spout and 
how data is being delivered in the system. 

A workflow in the FusionBox is essentially similar with a Storm topology; both describe 
the connection between abstract logical units and create a graph. 

Given those similarities the purpose of this Master thesis is to create the required 
framework on top of Storm’s existing one and investigate possible ways that a similar 
engine can be constructed and at the same time exploit Storm’s ecosystem and tools 

that offers for a more robust and scalable Fusion Box engine. [34] [35] 
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4. STORM AS A DATA FUSION ENGINE 

 

Storm gives a competent framework for creating complex topologies and at the same 
time offers the ability to fine tune all the parts of a topology, has the ability to scale and 
cope with demanding data streams.  

The goal of this thesis is the implementation of a framework on top of storm in order to 
describe and deploy topologies of predefined algorithms enclosed in bolts. This 
framework will be responsible to provide an abstraction on top of storm’s existing 
framework in order to give the ability to the user of the system (e.g. a data scientist) to 
define and execute such topologies without the need to program any of storm’s internal 
components(such as bolts and spouts). 

To achieve such an abstraction there are some steps that need to be implemented that 
will enable this system to create abstract topologies.  

1. An easy way to describe the topology via a description file. 
2. A complete set of algorithms that a scientist could find useful when having to 

process any number of data streams. 
3. The implementation of a framework on top of storm that can handle such generic 

topologies. 

 

4.1 Apache Storm Flux 

Apache Storm Flux project [36] is a framework for creating and deploying Apache Storm 
topologies with more ease.  

Currently the way a user can create a Storm topology is by creating a java object, a 
topology object where all the connectivity of the spouts and bolts is being described. 
After the topology object has been created the user can choose to deploy it on a Storm 
cluster, or run it locally in order to test the topology. However this class file is hard 
coded and any configuration change cannot be made without having to recompile the 
file and possibly the entire application which is something that is time consuming and 
can lead to any number of errors.  

To help automate this process Flux is essentially a framework responsible for creating 
topologies with the use of description files in YAML syntax. The way it approaches this 
is by relying heavily on reflection in order to build the desired topology object which then 
submits to the cluster for deployment. Flux framework therefore offers some unique 
features to the Storm ecosystem such as: 

1. Easily configure and deploy Storm topologies (Both Storm core and Microbatch API) 
without embedding configuration in your topology code 

2. Support for existing topology code  
3. Define Storm Core API (Spouts/Bolts) using a flexible YAML DSL 
4. YAML DSL support for most Storm components (storm-kafka, storm-hdfs, storm-

hbase, etc.) 
5. Convenient support for multi-language components 
6. External property substitution/filtering for easily switching between 

configurations/environments (similar to Maven-style ${variable.name} substitution) 
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Furthermore Flux can actually be described more appropriately as a YAML bean engine 
that can create any kind of object. An example topology is being shown below: 

 

name: "yaml-topology" 

config: 

  topology.workers: 1 

 

# spout definitions 

spouts: 

  - id: "spout-1" 

    className: "org.apache.storm.testing.TestWordSpout" 

    parallelism: 1 

 

# bolt definitions 

bolts: 

  - id: "bolt-1" 

    className: "org.apache.storm.testing.TestWordCounter" 

    parallelism: 1 

  - id: "bolt-2" 

    className: "org.apache.storm.flux.wrappers.bolts.LogInfoBolt" 

    parallelism: 1 

 

#stream definitions 

streams: 

  - name: "spout-1 --> bolt-1" # name isn't used (placeholder for 
logging, UI, etc.) 

    from: "spout-1" 

    to: "bolt-1" 

    grouping: 

      type: FIELDS 

      args: ["word"] 

 

  - name: "bolt-1 --> bolt2" 

    from: "bolt-1" 

    to: "bolt-2" 

    grouping: 
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      type: SHUFFLE 

 
 

This YAML file describes a topology that comprises of a spout that sends tuples to two 
bolts. Each YAML file that can be used for flux has some main components: 

 name : the name of the topology being described, 

 components: some beans that will be used from the spouts/bolts by being 
passed from a constructor or a simple method(not being shown here) 

 spouts: The spout definition section 

 bolts: The bolt definition section  

 streams: The  stream definition section where the connection the spouts and 
bolts is being described. 

This YAML description file describes a topology where a spout sends words and  two 
receiving bolts that receive each emitted word, one for counting how many times each 
word has appeared and another bolt that is responsible for logging each word that 
arrives. 

The alternative way to create such a topology would have been in a java file: 

 
 

public static void main(String[] args) throws Exception { 

         TopologyBuilder builder = new TopologyBuilder(); 
         TestWordSpout testWordSpout = new TestWordSpout(); 

         builder.addSpout(“spout-1”,testWordSpout,1); 

         TestWordCounter testWordCounter = new TestWordCounter(); 

         builder.addBolt(“bolt-1”, testWordCounter,1) 
                      .fieldsGrouping(“spout1”,newFields(“word”)); 

         LogInfoBolt logInfoBolt = new LogInfoBolt(); 

         builder.addBolt(“bolt-2”,logInfoBolt,1) 
                      .shuffleGrouping(“spout-1”); 
         StormTopology topology = builder.buildTopology(…) 
         topology.run(); 

} 

 
 

Any extra needed modification (e.g. changing one spout, changing the fields grouping 
etc.) would require recompilation of the class and potentially of the entire project.  

Flux also offers much flexibility to the user by giving him the ability to combine many 
YAML DSL files in order to compose all the components of the topology as well as the 
ability to reference variables from property files and environmental variables from other 
YAML files as well: 

With the following dev.properties file: 
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kafka.zookeeper.hosts: localhost:2181 
 
 
You would then be able to reference those properties by key in your .yaml file using ${} 
syntax: 
 
 

 - id: "zkHosts" 

    className: "org.apache.storm.kafka.ZkHosts" 

    constructorArgs: 

      - "${kafka.zookeeper.hosts}" 
 
 
In this case, Flux would replace ${ kafka.zookeeper.hosts } with localhost: 2181 before 
parsing the YAML contents. 
 

Furthermore Flux can support constructor initialization and method invocation by 
referencing the method to be called and passing arguments, either simple or complex 
objects. Property setting is also supported. 

Arguments to a class constructor can be configured by adding a contructorArgs element 
to a component. ConstructorArgs is a list of objects that will be passed to the class' 
constructor. The following example creates an object by calling the constructor that 
takes a single string as an argument: 

- id: "zkHosts" 

    className: "org.apache.storm.kafka.ZkHosts" 

    constructorArgs: 

      -"localhost:2181" 
 

Or a complex object using the reference[ref] tag: 

components: 

  - id: "stringScheme" 

    className: "org.apache.storm.kafka.StringScheme" 

 

  - id: "stringMultiScheme" 

    className: "org.apache.storm.spout.SchemeAsMultiScheme" 

    constructorArgs: 

      - ref: "stringScheme" # component with id "stringScheme"  #must 
be  declared above. 

 

Flux example of setting properties: 
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  - id: "spoutConfig" 

    className: "org.apache.storm.kafka.SpoutConfig" 

    constructorArgs: 

      # brokerHosts 

      - ref: "zkHosts" 

      # topic 

      - "myKafkaTopic" 

      # zkRoot 

      - "/kafkaSpout" 

      # id 

      - "myId" 

    properties: 

      - name: "ignoreZkOffsets" 

        value: true 

      - name: "scheme" 

        ref: "stringMultiScheme" 
 

Configuration methods are similar to Properties and Constructor Args; they allow you to 
invoke an arbitrary method on an object after it is constructed. Configuration methods 
are useful for working with classes that don't expose JavaBean methods or have 
constructors that can fully configure the object. Common examples include classes that 
use the builder pattern for configuration/composition. 

The following YAML example creates a bolt and configures it by calling several 
methods: 

bolts: 

  - id: "bolt-1" 

    className: "org.apache.storm.flux.test.TestBolt" 

    parallelism: 1 

    configMethods:      # public void withFoo(String foo); 

      - name: "withFoo" 

        args: 

          - "foo" 

      - name: "withBar"   # public void withBar(String bar); 

        args: 

          - "bar" 
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      - name: "withFooBar" # public void withFooBar(String  #foo, 
String bar); 

        args: 

          - "foo" 

          - "bar" 

Arguments passed to configuration methods work much the same way as constructor 
arguments, and support references as well. 

Also Flux supports a configuration section that simply a map of Storm topology 
configuration parameters that will be passed to the org.apache.storm.StormSubmitter as 
an instance of the org.apache.storm.Config class: 

config: 

  topology.workers: 4 

  topology.max.spout.pending: 1000 

  topology.message.timeout.secs: 30 

Flux supports also the ability to specify a class that returns a topology object for 
deployment. 

For our purposes, Flux seems to be an excellent choice since it gives the ability to the 
user to describe topologies or change aspects of existing ones via a description file. 
Furthermore Flux’s ability to construct objects/components has a significant impact on 
how we would like our system to behave. However there are some details that need to 
be fine grained in order to make Flux a topology engine in such a way that the 
experimenter would not have to write any code or recompile any of the project’s files. 

 

4.2 Advancing the framework 

By using Flux we can describe the topology and therefore abstract the way the topology 
is being created so that it’s not so tightly connected with the project itself, it can change 
without having to change or recompile our entire project. 

Continuing our system design we can now create a set of algorithms that will essentially 
be bolt classes and then use the Flux framework to build almost any kind of topology. 
One approach would be to create each algorithm as an extension of the bolt class and 
therefore each time we would like to chain some algorithms together all we would have 
to do is chain the algorithms.  

While this approach was considered at the beginning it was evident that the code used 
for each bolt in order to operate was quite repetitive. Therefore the approach was 
changed so that every bolt would be essentially a wrapper for the algorithm. It was 
pretty clear that any algorithm would require little or no knowledge of the bolt’s context 
of execution.  Any information needed from the bolt to the algorithm can be supplied by 
having all the algorithms to comply to an interface that will regulate the information 
exchange between them.  
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Therefore each bolt will act more like a generic bolt that will be able to hold or wrap an 
algorithm inside. The bolt will be solely responsible for receiving messages and emitting 
them to the appropriate next bolt or bolts according to the topology. The algorithm on 
the other hand will be responsible for applying any kind of logic or transformation to the 
incoming message or messages and supplying  the payload to the bolt for transmission. 
Furthermore the bolt will give the algorithm its chance to perform any necessary 
initialization. 

All these conventions have been derived from experimenting with the storm framework 
and its limitations. 

The current design supported for each algorithm and bolt is being shown by the 
following classes: 

public interface IAlgorithm { 

  void prepare(); 

  void Values execute(Tuple incomingTuple); 

} 
 

 

public  class GenericBolt implements IRichBolt, IAlgorithm { 

    IAlgorithm algorithm; 

 

  public void setAlgorithm(IAlgorithm algo) { 

      this.algorithm  = algorithm; 

  } 

 

  @Override 

  public void prepare(Map map, 

                    TopologyContext topologyContext,  

                             OutputCollector outputCollector) { 

       this.algorithm.prepare(); 

  } 

 

  @Override 

  public void execute(Tuple tuple) { 

     values = algorithm.executeAlgorithm(tuple); 

     emit(values); 

  } 
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The prepare method gives actually the chance to the algorithm to implement all 
necessary initializations at the prepare method of the bolt.  

This is needed since storm essentially requires that any bolt and spout prior to topology 
creation is serializable, therefore each of its members. In order to provide more flexibility 
to the programmer it provides a prepare method where any initialization of the non 
serializable objects is to happen. That is why we provide the same method to the 
enclosed algorithm. 

 
However according to the kind of bolts(single input bolts vs Windowed bolts) this 
abstraction can change according to the wrapper bolt. In case we have to use 
windowed bolts the implementation changes respectively by having a 
GenericWindowedBolt that implements the IWindowedAlgorithm interface with similar 
methods(input changes).  

While someone can argue that some algorithms can work in both ways, windowed or by 
single value, setting this enforces a cleaner approach and gives the programmer the 
ability to implement both versions of the algorithm if needed without having to resort to 
solutions like reflection to accommodate both variations of the algorithm’s behavior at 
the same class file.  

 

4.3 Stream definition, grouping, declarer 

In all the above topologies described we were able to describe a way so that the 
topologies can be configured and expressed in a YAML DSL using Flux. However we 
would like to give to the experimenter the ability to connect all spouts and bolts 
regardless of what the input/output would be of each algorithm.  

The tuple is the main data structure in Storm. A tuple is a named list of values, where 
each value can be any type [37]. 

Storm has some limitations when emitting tuples from a spout to a bolt or from a bolt to 
another. Every spout or bolt before the prepare stage, before the topology creation that 
is, needs to declare the outgoing fields or “labels” for each spout or bolt participating to 
the topology. Since a tuple is essentially a list of named values array every bolt would 
have to know how many fields is it going to receive and what will be their name, in order 
to be accessible from the tuple wrapper class. An example is being shown below: 

@Override 

public void declareOutputFields( OutputFieldsDeclarer declarer) { 

    declarer.declare(stream, new Fields(“id”, “value”, “timestamp”); 

} 

 

This is a declare method example being used in bolts to declare the format of the 
outgoing fields. This describes that the emitted tuple will contain three fields named “id”, 
“value” and “timestamp” with their corresponding values. The next bolt receiving this 
tuple will be able to get all of the three values by calling the method 
getFieldByName(String fieldname) .  
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Furthermore Tuples are dynamically typed – the types of the fields do not need to be 
declared and also have helper methods like getInteger and getString to get field values 
without having to cast the result [37].  

Every spout or bolt, when emitting and receiving tuples, checks that the tuple conforms 
to the format declared from each emitter. Whenever a spout or a bolt emits something 
different on each tuple (e.g. a field more) then an exception is being thrown.  

A stream is an unbounded sequence of tuples that is processed and created in parallel 
in a distributed fashion as we have already discussed. Streams are defined with a 
schema that names the fields in the stream's tuples. By default, tuples can contain 
integers, longs, shorts, bytes, strings, doubles, floats, booleans, and byte arrays. 

Every stream is given an id when declared. Since single-stream spouts and bolts are so 
common, OutputFieldsDeclarer has convenience methods for declaring a single stream 
without specifying an id. In this case, the stream is given the default id of "default" [23]. 

Whenever having to declare the outgoing fields we also can specify a specific stream to 
emit the tuples. Apart from the default stream we can have multiple streams which we 
will have to name.  In the method declareOutputFields we must specify every stream 
that this component is emitting. In the case of a single stream the default id can be 
used. A component emitting to many streams can choose which tuples to emit to any of 
those streams according to how we would like our component to behave and what kind 
of fields will be emitted to each stream. 

Therefore apart from declaring the outgoing fields for each stream we can choose the 
conditions and the behavior of our component. For example a bolt declaring two 
streams, can choose to emit all the values that surpass a threshold to a stream while 
forwarding the other values to another. 

public void declareOutputFields( OutputFieldsDeclarer declarer) { 

    declarer.declare(“over-threshold”,  
                 new Fields(“id”, “value”, “timestamp”); 

    declarer.declare(“under-threshold”, new Fields(“id”,”value”); 

} 

 

public void exectute(Tuple tuple) { 

   int value = tuple.getInt(1); // dynamically resolved type,  
           // we know that at the second position is the “value”  
          // and is an integer 

  if( value > threshold)  
          collector.emit(“over-threshold”,  
            new Values(tuple.getString(0), value,  
                     tuple.getLong(2)); 

  else collector.emit(“under-threshold”,  
            new Values(tuple.getString(0), value); 

} 
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In this example not only the bolt sends messages to two recipients, but also splits the 
stream according to some threshold and changes the fields of each message according 
to the stream that the message is being emitted to.  

In order for a component to be able to send messages to more than one streams, this 
must be described also at the stream definition section of the topology creation. For 
example:   

#stream definitions 

streams: 

  - name: "spout-1 --> splitter-bolt"  

    from: "spout-1" 

    to: "splitter-bolt" 

    grouping: 

      streamId: “stream-1” 

      type: SHUFFLE 

 

  - name: "splitter-bolt --> over-threshold-bolt" 

    from: "splitter-bolt" 

    to: "over-threshold-bolt" 

    grouping: 

      streamId: “over-threshold” 

      type: SHUFFLE 
 

  - name: "splitter-bolt --> under-threshold-bolt" 

    from: "splitter-bolt" 

    to: "under-threshold-bolt" 

    grouping: 

      streamId: “under-threshold” 

      type: SHUFFLE 
 

 

As the example shows the stream definitions actually describe that each component 
might have more than one streams that it can emit therefore there must be compliance 
between what is declared at the stream and topology definition and what is declared at 
the component declare method. This is left to the programmer.  

In our scope however we would like a way to abstract this definition so that when a user 
describes a topology with any kind of fields, that contract must be kept without the need 
to explicitly program and change each connected component every time the user 
describes a topology. A solution that seems a little bit far-fetched is to write to the 
component class files the declaration of fields and streams every time the user specifies 
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a topology graph which is something error prone and requires recompiling the entire 
framework and suite to incorporate the stream to fields declaration compliance.  

A nice solution would be to extend the implementation of bolts and spouts and give a 
set of functions that enable to register stream and field definitions to the class. By 
calling those functions with our desired parameters each component can simply add the 
stream and fields definition. Flux enables us to call methods with parameters therefore a 
class with a method declareStreamWithFields(String streamId, String … fields) could be 
called from the YAML DSL files and the corresponding class would register the 
declaration as follows: 

public class GenericBolt implements IRichBolt, IAlgorithm { 

  public Map<String, List<String> outgoingFields> 
                       streamFieldsMap; 

  

  public void declareStreamWithFields( String streamId,  
                         String …fields) {  

       //assume initialization of Map has been performed in the prepare 
method 

       streamFieldsMap.put(streamId, Arrays.asList(fields)); 

   }  

 

  public void declareOutputFields(  
                OutputFieldsDeclarer declarer) { 

          streamFieldsMap.forEach( stream , fieldStrings)  
                -> declarer.declareStream(stream,  
                        new Fields(fieldStrings)));     

       } 

} 
 

The creator of the YAML file now is responsible for defining the outgoing fields and 
streams for each component and as a consequence is also responsible for complying to 
the described topology and stream definition.  

name: "yaml-topology" 

config: 

  topology.workers: 1 

 

# spout definitions 

spouts: 

  - id: "spout-1" 

    className: "org.apache.storm.testing.TestWordSpout" 

    configMethods:  
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     - name: “declareStreamWithFields” 

          args:  

              - “stream-1” 

              - “word”  

    configMethods:  

      - name: “declareStreamWithFields” 

           args:  

              - “stream-2” 

              - “word” 

          parallelism: 1 

 

# bolt definitions 

bolts: 

  - id: "bolt-1" 

    className: "org.apache.storm.testing.TestWordCounter" 

    # no declare method here, this bolt doesn’t send anything to anyone 

    parallelism: 1 

 

  - id: "bolt-2" 

    className:  "org.apache.storm.flux.wrappers.bolts.LogInfoBolt" 

    # no declare method here, this bolt doesn’t send anything to anyone 

    parallelism: 1 

 

#stream definitions 

streams: 

  - name: "spout-1 --> bolt-1"  

    from: "spout-1" 

    to: "bolt-1" 

    grouping: 

      streamId: “stream-1” 

      type: FIELDS 

      args: ["word"] 

 

  - name: "bolt-1 --> bolt2" 

    from: "bolt-1" 
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    to: "bolt-2" 

    grouping: 

      streamId: “stream-2” 

      type: SHUFFLE 

 
 

By incorporating those changes we see that the complexity has shifted from the 
programmer that implements the classes, to the user that creates the topology since he 
is responsible for calling the appropriate methods. That’s a complexity that can become 
confusing and cumbersome to the user, since he must know at each component which 
methods to call and also what kind of algorithm is enclosed in each bolt.  

If we provide to the user a suite of algorithms by having him to specify the fields 
definitions, we subsequently impose to the user to have knowledge of each algorithms 
input and output, since he has to declare each set of fields on each node of the topology 
graph(the output of one algorithm becomes input to the other).  

We would like to have a way to automate this procedure so that the user only has to 
know what an algorithm does and not what it should be emitting to the next. The user is 
responsible to create a topology with a logical meaning, and by that it is implied that all 
algorithms should be able to connect with each other, as far as storm is concerned, but 
the logical chaining of algorithms cannot happen with each and every algorithm 
because that would lead to a topology without any logical meaning.  

For example an algorithm that classifies an incoming value and forwards the value to an 
algorithm that computes the median of many incoming values would not have much 
meaning. This is something that the user must avoid, however the framework on top of 
the Storm should not, in order to create a really versatile framework. Consequently if we 
would like to ensure a logically valid topology we could implement a set of rules 
indicating the possible logical pairs that each algorithm can chain to. 

By inspecting the set of algorithms that have been implemented so far, we can see that 
each algorithm performs a transformation to the incoming fields and produces the 
outgoing fields. Some algorithms check if a value has breached a threshold and detain 
the value, others compute if there has been a value that can be characterized as an 
outlier, others detect if there has been a surge of values towards some upper or lower 
boundaries etc. Each algorithm subsequently applies a transformation to the fields. For 
example the CUSUM algorithm that detects if there has been a surge in the stream 
values simply adds another field to the tuple emitted indicating such an incident. The 
FieldFilter algorithm basically removes any unwanted fields with their values from a 
stream, reducing the values a tuple contains. In the first case all we would have to do is 
add one more field to the declarer while in the latter we would have to specify the 
remaining fields that have not been removed from the algorithm to the declarer.  

This leads us to the realization that we could implement a way to specify the fields of 
each bolt by taking into consideration the incoming fields (from the previous algorithm or 
spout) and applying the transformation of the current algorithm and declaring the new 
fields if the bolt has someone to send them to (this is specified to the topology creation). 

Each algorithm will have to implement an interface that will provide a function that the 
incoming fields to the bolt, and subsequently to the algorithm will be passed and the 
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algorithm will declare the transformed fields and use them as incoming fields for the 
next algorithm. 

public interface FieldTransformer { 

    //applies a transformation to the incoming fields 
    //returning the new fields 

    Public String[] transformFields( String incomingFields); 

} 
 

Now every algorithm interface IAlgorithm and IWindowedAlgorithm needs to implement 
the FieldTransformer interface. Each algorithm depending on the implementation can 
remove fields, change them completely or do nothing on the incoming fields. 

What we would like now is to have a manager that will be responsible to pass any field 
relevant information to the bolts according to the topology described before the topology 
creation. Since Flux is responsible for creating the bolts and spouts we could implement 
this functionality inside Flux. 

However changes must be done to the Flux code so that it can incorporate this extra 
functionality.  At the same time we would like not to break the existing functionality as 
well. Flux uses description files, essentially class files that describe the core elements of 
each Storm component (config, spouts, bolts, stream definitions and components – 
essentially beans). We could extend those existing models to create our own models 
and insert a set of functions so that they can resolve the field declaration.  

For this purpose a class called FusionBoltDef that extends the existing BoltDef (Bolt 
Definition class of Flux) has been created and this way we can declare fusion-bolts 
inside the Flux YAML DSL. Those bolts are somewhat different from plain Flux bolts in 
the sense that they try to resolve the field and stream definitions accordingly to what we 
have described so far.  

public class FusionBoltDef extends BoltDef { 

    public String[] fields = null; 

    public String[] getFields() { 

        return fields; 

    } 

    public void setFields(String[] fields) { 

        this.fields = fields; 

    } 

} 
 

Every FusionBoltDef is essentialy a description file for creating FusionBolts which is an 
interface that all bolts of our system must comply to: 

 

public interface FusionBolt { 
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    public void setFields(boolean terminalNode, String ...fieldNames); 

    public void addOutgoingStreamName(String streamName); 

    public String[] getOutgoingFields(); 

} 
 

Essentially what we are trying to do is to model the communication between the 
GenericBolt and the enclosed, algorithm whatever this algorithm might be. 

This enables us after the bolts have been created in Flux to use the information 
described from the stream definitions in order to do depth first search of the topology 
graph starting from spouts and continuing with the bolts. At each step of the recursion if 
we find a bolt, let’s say bolt-1 that connects with another bolt(bolt-2), we acquire the 
outgoingFields from the parent of bolt-1 and insert them at bolt-1 where the algorithm of 
bolt-1 has a predefined transformation on them and returns the outgoing fields. It is 
important to remember that we need to declare only the outgoing fields, therefore bolt-2 
will have to declare its outgoing fields only if there is another connection starting from 
bolt-2 to another chained bolt. The same procedure happens at the streams declared at 
the described topology. They’re being passed inside the bolt and to the declarer of the 
component. 

We now have the ability to create complex topologies without the need for the user to 
specify incoming and outgoing fields, our extended Flux engine takes care of that. 

While any bolt and algorithm can vary its approach to different values of the stream 
which is something the programmer can easily implement, when providing the 
abstraction we aim to, it goes without saying, that an algorithm that selectively decides 
in which stream to emit each incoming value is something that cannot be easily 
implemented at a generic algorithm unless this is the nature of the algorithm.  

Since the connection of each bolt and subsequently of the algorithm is expressed 
externally at the topology creation(one bolt might have input from many streams) we 
cannot incorporate different behaviour according to the output streams of the algorithm. 
That means that the algorithm will not differ its behaviour when emitting to many 
streams. Imagine a thresholding algorithm that has to mutate its behaviour according to 
how many streams it must send the tuple. This cannot be implemented on a compiled 
class unless we change the code or else the behaviour of the algorithm by injecting 
code and recompiling the class. 

In a scenario where we would like an algorithm to emit let’s say numerical values that 
befall to a specific range to specific streams, e.g. an algorithm that maps integers from 
(-100,0] (0,100) we can have the same effect by chaining the same algorithm twice and 
changing its parameters. For this specific example we would have to split the stream by 
specifying two recipients of the stream essentially copying the values and the one would 
have to apply a threshold to keep values below of equal to zero and then another with 
values bigger than -100. The same would have to happen at the other stream 
respectively by creating an algorithm of threshold over zero and another that with a 
threshold less than 100. 

 

4.4 Defining Spouts 
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As we continue our search for an abstraction of our framework we need to find a way to 
declare spouts so that they can consume messages from almost any queue the user 
might need to. Right now kafka and mqtt consumers are available and more consumers 
will be implemented.  

One of the main questions and problems that arise when deciding how to approach the 
framework is how can we instruct the spout to send to multiple streams, which is 
something partially solved from the approach we used when we were designing the 
fusion bolts, and how will we give the user the ability to split the incoming messages 
according to his needs. Mqtt consumer handles incoming messages as a sequence of 
characters, while a kafka consumer treats incoming messages as a byte array. The 
kafka consumer provided by Storm has a more complex approach since it handles the 
complete functionality of the kafka message queue, however it provides a way to define 
a serialization scheme that the user can specify or extend according to his needs, that 
essentially handles the message serialization.   

We would like to uphold some kind of consistency between the spout definitions of both 
queues so that the definition would be similar. When describing a message consumer 
configuration aspects, that appear the same, to any kind of message queue are the 
connecting host, a port, a message topic in which we are interested and a message 
format or scheme so that we can interpret the consumed messages. Since that kafka 
consumer specifies such information and configuration at a configuration class which is 
then passed into the kafka spout, the mqtt configuration has been altered to have the 
same look so that in the YAML DSL file appear somewhat similar. However we could 
not avoid making new definition files for each consumer in the Flux files. Therefore two 
new kinds of spouts configs have been created mqtt-config and kafka-config as shown 
below: 

mqttconfig: 
  - id: "mqtt-config" 
    className: "flux.model.extended.MqttSpoutConfigDef" 
    brokerUrl: "tcp://localhost:1883" 
    topic: "health_monitor/blood_pressure" 
    clientId: "hello" 
    regex: "," 

spouts: 
  - id: "blood-spout" 
    className: "consumers.MqttConsumerSpout" 
    constructorArgs: 
      - ref: "mqtt-config" 
 

 

kafkaconfig: 
  - id: "kafka-config" 
    className: "flux.model.extended.KafkaSpoutConfigDef" 
    regex: "," 
    zkHosts: "localhost:2181" 
    topic: "health" 
    zkRoot: "/health" 
    clientId: "storm-consumer" 
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spouts: 
  - id: "kafka-spout" 
    className: "consumers.FusionKafkaSpout" 
    constructorArgs: 
      - ref: "kafka-config" 
 

 

Both mqtt-config and kafka config appear almost similar to the user while at the same 
time hiding the complexity of the underlying implementation. For example this is what it 
would look like creating a kafka consumer with vanilla Flux: 

- id: "keyValueSchemeasMultiScheme" 
  className: "org.apache.storm.kafka.KeyValueSchemeAsMultiScheme" 
  constructorArgs: 
    - ref: "fusionScheme" 
 
- id: "zkHosts" 
  className: "org.apache.storm.kafka.ZkHosts" 
  constructorArgs: 
    - "localhost:2181" 
 
- id: "spoutConfig" 
  className: "org.apache.storm.kafka.SpoutConfig" 
  constructorArgs: 
    # brokerHosts 
    - ref: "zkHosts" 
    # topic 
    - "health" 
    # zkRoot 
    - "/health" 
    # id 
    - "storm-consumer" 
  properties: 
    - name: "bufferSizeBytes" 
      value: 4194304 
    - name: "fetchSizeBytes" 
      value: 4194304 
    - name: "scheme" 
      ref: "keyValueSchemeasMultiScheme" 

 

spouts: 
  - id: "kafka-spout" 
    className: "org.apache.storm.kafka.KafkaSpout" 
    constructorArgs: 
      - ref: "spoutConfig" 
 

Clearly the complexity of defining a kafka consumer has been greatly reduced. 
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Another issue we have with the consumers is that we have to specify a way to interpret 
the incoming message. Any incoming message, apart from complex types that we don’t 
support for numerous reasons, will consist of mainly primitive types such as strings and 
numbers. Given that any incoming message can be handled as a string message and 
then can be split to its corresponding parts. For example a message in the format 
“sensor-1, 80.0, 90” is a message that can be split every time a comma appears. 
Therefore the regex for this message format is “,”.  That requires that each configuration 
(either mqtt or kafka) defines a regex pattern so that every message can be split to its 
parts.  

Furthermore even when a message has been split we would like to know its type. This 
is imperative since each tuple handles any contained value as an object in order to 
avoid complex annotations from the part of the programmer and that has a 
consequence that each contained value loses its static java type. To put it more bluntly 
since the programmer has constructed the tuple, he is responsible to know how to 
access each field. 

The main goal of the framework is to avoid the heavy use of reflection on each incoming 
tuple since this would make the system much more complex and slow if we have to 
check the type of each field before we take any action. This approach will lead to a 
complex implementation and poor maintainability. However in marginal cases we would 
like to give to the ability to do so, to whoever decides to extend the framework and add 
new algorithms. In order to support this approach the values included inside each tuple 
will have to be resolved to their dynamic type despite the fact that the tuple wraps them 
as an object. This is where we require some extra information from the user to supply 
the class of each contained value on each incoming message apart from the field’s 
labels of each value. Each consumer now contains a class mapper that maps each field 
to its corresponding class and creates an instance of this class (java.lang.String for 
Strings, java.lang.Integer for Integers etc.). Using this approach each tuple has a list of 
objects but each type has been instantiated to its correct type and now we can use 
reflection on it if is needed (instance of and other functions). The augmented config 
class now looks like this: 

mqttconfig: 
  - id: "mqtt-config" 
    className: "flux.model.extended.MqttSpoutConfigDef" 
    brokerUrl: "tcp://localhost:1883" 
    topic: "health_monitor/blood_pressure" 
    clientId: "hello" 
    regex: "," 
    fields: 
      - "id" 
      - "value" 
      - "timestamp" 
    classes: 
      - "java.lang.String" 
      - "java.lang.Double" 
      - "java.lang.Long" 
   

Respectively the kafka-config has been changed to incorporate this functionality as well.  

Let’s dive a little bit deeper into the mapper functionality:  
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public class OutputFieldsClassMapper implements Serializable { 

 

protected List<ClassConverter<?>> converters = null; 
protected List<Class> classes = null; 
protected String regex = null; 
protected String[] classNames; 

 

… 

private void resolveClassConverters(String[] classes) { 
    converters = new ArrayList<>(); 
    for (String clazz : classes) { 
        switch (clazz) { 
            case "java.lang.Integer": 
                converters.add( 
                   (ClassConverter<Integer>) Integer::valueOf); 
                break; 
            case "java.lang.Double": 
                converters.add( 
                    (ClassConverter<Double>) Double::valueOf); 
                break; 
            case "java.lang.Float": 
                converters.add( 
                    (ClassConverter<Float>) Float::valueOf); 
                break; 
            case "java.lang.Long": 
                converters.add( 
                    (ClassConverter<Long>) Long::valueOf); 
                break; 
            default: 
                converters.add( 
                    (ClassConverter<String>) value -> value); 
        } 
    } 
} 

 

} 
 

Each OutputFieldClassMapper class needs input the class names in String which then 
resolves to their corresponding Class object by using the class.ForName function. Since 
we have imposed out restrictions that we only handle primitive types all it needs to do is 
implement a set of converters that will interpret the value to their corresponding class 
type.  

The ClassConverter is an interface that contains only one function: 

 

public interface ClassConverter { 
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    T convertToObject(String value);  

} 

 

This class is being instantiated on runtime and creates the implementation of how the 
String value is going to be resolved.  

Generally the problem of resolving the object to its corresponding class type at runtime 
is a problem that it is being addressed with this kind of approach any time it is needed. 
A thresholding algorithm that essentially compares numbers needs to know what kind of 
numbers it is going to compare. The converter class comes handy in this type of 
situation again requiring some user supplied information to help the process. What is 
significant here is that we have a set of converters instantiated once at runtime at the 
topology creation (at the prepare method of each component, spout or bolt) and we 
don’t have to check for every incoming tuple and value what is its corresponding type. 
This methodology is quicker and much more robust but requires more user interaction 
with the system. 

To sum up with this strategy now the spouts can handle unwinding simple messages 
and resolving them to their corresponding type. The approach we used on the previous 
chapter about declaring fields and streams is also being used at the spouts with one 
minor setback: The kafka – spout does not support natively the ability to send to many 
streams. This can be tackled however until this matter is resolved (from the storm team) 
with another approach: we can chain any spout to a bolt and delegate the responsibility 
to emit to many streams with the use of the NoAlgorithm (actually an algorithm that 
does nothing) but the wrapping bolt can handle sending the tuples to multiple streams. 

 Unfortunately this was a setback that was improssible to overcome by extending the 
kafka storm classes since there were being used many inner protected classes and 
extending this functionality was not possible. An approach using reflection has been 
considered and will be left to future work. 
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5. ALGORITHMS EMPOWERING THE FUSION ENGINE 

 

A set of algorithms has been provided with the first version of the Fusion engine in order 
to give the user some choices regarding the setup of his topology and in order to 
provide some insight of how the framework should be designed. Apart from utility 
algorithms like median, max, min etc more complicated algorithms have been 
implemented such as Cusum and Shewhart that belongs to control charts algorithms, a 
Bayesian network algorithm and other algorithms that are responsible for merging 
streams according to the specifications provided by the user( time, sliding and tumbling 
window). This is not the complete set of algorithms the framework is going to support 
but new algorithms can be added once we create the underlying framework to support 
bolt intercommunication and message relaying in a generic fashion.  

Following, is a brief description of each algorithm used. 

 

5.1 Shewhart algorithm 

This algorithm is also called control chart or Shewhart chart (after Walter A.  Shewhart) 
or process behavior charts and is a statistical process tool that is mainly being used if a 
process is in state of control. More specifically this algorithm is designed to monitor the 
process mean and standard deviation for deviations from stability by assuming a normal 
distribution across the values of the process [38].  

By analyzing the control chart we have indications that the process is currently under 
control and every variation of the values is coming from known sources that are 
common to the process, therefore no corrections or changes to the control of the 
process are needed. However if a value that deviates a lot from the current process 
mean and standard deviation appears then the chart will indicate a sudden shift or 
change of the process and then correctional actions will have to be taken [39].  

In order to achieve this, the Shewhart control chart has a baseline and upper and lower 
limits that are symmetric about the baseline. Measurements that are outside the limits 
are considered to be out of control. The baseline for the control chart is the accepted 
value, an average of the historical check standard values. The upper (UCL ) and lower 
(LCL) control limits are computed by these formulae: 

                                                     

                                                     

An example is being shown on Figure 19. 
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Figure 19 Shewhart example 

The value k can be set to 2 in which case approximately 5% of the measurements are 
likely to produce out-of-control signals. To produce out-of-control signals that are 

egregiously out of control, the   value can be set to 3 that corresponds to approximately 
1% of the total measurements that can produce out-of-control signals [40]. An algorithm 
showing the steps of the Shewhart control chart follows: 

ALGORITHM 2. Shewhart Control Chart 

Input: univariate time series 
tx , tightness k  

Output: detection signal s  

 

0 0x  ; 

0 0  ; 

1t  ; 

while ( true ) 

     1

1

t t

t t

x x
x x

t






  ; 

          2

1 1

1
1t t t t t tt x x x x

t
         ; 

     
t t tUCL x k    ; 

     
t t tLCL x k    ; 

     if ((
tx UCL ) or (

tx LCL )) then 

          1s  ; 

     else 

          0s  ; 
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     end 

     1t t  ; 

end 
 

This algorithm is being offered in the Fusion engine and can be used in numerous ways 
when exploring data incoming from streams. It can detect the presence of outliers so 
that we can choose to completely ignore those values as errors in the process or we 
can choose to interpret them as values that require corrective actions. Either way this 
algorithm applies a transformation to the incoming fields by emitting one extra field 
called “shewhart” and displays a distinct value of           for indicating respectively a 
breach on the lower control lever, no breach, or a breach in the upper control level and 
the incoming value along with any extra information.  

This algorithm decides the upper and lower control limits based on some previous 
historical data. This means that this algorithm can work with a single incoming value of 
every tuple, or with a list of tuples or a window. Both versions of this algorithm have 
been created and it is up to the user to modify them correctly. Windowed algorithms are 
parameterized externally from the bolt’s context and not at an algorithmic level. 
Therefore this windowed version of the algorithm could work if the user were to define a 
tumbling window of values, or a time window.  

A windowed version of the algorithm produces again the same, an extra field that 
indicates if there has been a breach with an option to emit the entire received window 
along with the extra field [40]. 

 

5.2 CUSUM Algorithm 

CUSUM algorithm (cumulative sum control chart ), like Shewhart  algorithm belong to 
the statistical quality control family of algorithms performs a sequential analysis 
technique and is ideal for monitoring change detection. The CUSUM (cumulative sum) 
is used to track the variation of a process. It is a method that is able to detect small 
shifts in the process’ mean. [41]  

The cumulative sum (CUSUM) algorithm attempts to detect a change on the distribution 
of a time series with respect to a target value at real-time. Specifically, we consider a 

univariate time series  consisting of data values collected over time and a target value   
for this data stream. CUSUM involves the calculation of positive and negative changes ( 

 and  , respectively) in the time series    cumulatively over time and it compares these 

changes to a positive and a negative threshold (         and         , respectively). 
Whenever these thresholds are exceeded, a change is reported through the above-

detection and below-detection signals (   and   , respectively) while the cumulative 
sums are set to zero. In order to avoid the detection of non-abrupt changes or slow 
drifts, the algorithm takes into consideration tolerance parameters for positive and 

negative changes (   and   , respectively) [42]. 

The input parameters for the CUSUM algorithm are the following: 

 the target value   

 the above-tolerance value    

 the below-tolerance value    

 the above-threshold value         

https://eclass.uoa.gr/modules/document/index.php?course=DI367&openDir=/54f4533blLZv
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 the below-threshold value         
 

The output parameters for the CUSUM algorithm are the following: 

 the above-detection signal           
 the below-detection signal          

 

Cumulative Sum (CUSUM) 

Input: univariate time series 
tx , target value  , above-tolerance k  , 

below-tolerance k  , above-threshold thres , below-threshold thres  

Output: above detection signal s , below detection signal s  

0P  ; 

0N  ; 

1t  ; 

while ( true ) 

     0s  ; 

     0s  ; 

       max 0, tP x k P     ; 

       min 0, tN x k N     ; 

     if ( P thres ) then 

          1s  ; 

          0P  ; 

          0N  ; 

     end 

     if ( N thres  ) then 

          1s  ; 

          0P  ; 

          0N  ; 

     end 

     1t t  ; 

end 
 

The algorithm assumes that the arrived time series follow a normal distribution. In order 
the algorithm to work properly, the tolerance and threshold parameters should be tuned 
in a way that determines what an actual change is for a specific time-series [43].  

This tuning can be performed by following these steps: 

 Start with large                 values.  
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 Choose       parameters to half of the expected change, or adjust them such 
that ,P N  are zero more than half of the times.  

 Then set the                values so that the required number of false alarms 
or the required delay for detection is obtained.  

 If faster detection is sought, try to decrease       values.  
 If fewer false alarms are desired or changes that do not make sense are 

detected, try to increase       values.  

The upcoming Figure 19 illustrates an example of the CUSUM algorithm over a 
sensor stream  where two changes (a positive and a negative one) are detected. The 

target value for    is set to        , the tolerance values are set to            and 
the threshold values are determined to                      . Specifically, the next 
figure presents the original sensor data and the time steps where a change is detected 
by the algorithm.  
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Figure 20 CUSUM on stream values 

 

The next figure (Figure 20) depicts the cumulative sums of positive and negative 

changes over time for    . Obviously, in case of multivariate sensor data, CUSUM 
should be applied to each variable separately. 
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Figure 21 CUSUM chart 

 

5.3 Bayesian Networks 

A Bayesian network, or a belief network is a probabilistic directed acyclic graphical 
(DAG) model, a type of statistical model that represents our limited view of a an 
uncertain domain. Each node of the network represents a random variable while the 
edges connecting the nodes according to our understanding of the domain represent 
the conditional dependencies among the nodes [44].  

Each conditional dependence in the graph is being estimated by using probabilistic and 
statistical estimation methods and mainly Bayes theorem (alternatively Bayes’ law or 
Bayes' rule): 

 (   |      
 (   |        (    

 (    
 

 

Each node in the directed acyclic graph represents the states we would like to model, 
usually drawn in a circle and given a name, and the set of edges that are essentially the 
connection between the random variables (or the nodes). Each edge corresponds to a 
direct dependence among the two connected nodes, or roughly speaking that an edge 
from node A to node B indicates that variable A influences variable B. Node A then is 
considered parent of node B, or its ancestor and node B is considered child, or 
descendant of node A. Each node participating in the graph must have a kind of 
relationship with another node, and not with itself ( a node cannot be its own ancestor or 
its own descendant), thus ensuring the acyclic nature of the graph [45][46].  

Essentially a Bayesian network is a network that represents the causal probabilistic 
relationship among a set of random variables, their conditional dependences, and it 
provides a compact representation of a joint probability distribution.  
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Bayesian networks are not exact representations of a situation that we are trying to 
model, in fact our knowledge of the situation is incomplete but we can be certain that 
causality plays an important role.  

An example of a Bayesian network for illustration is being shown below on Figure 22. 

In this example we would like to know if our family is at home before trying the doors. 
When someone leaves the house the outdoor light is on, but sometimes the light is on 
whenever there is a guest at the house. Also the dog is being put on the back yard 
when nobody is home, but there might be the case that the dog has a bowel problem 
therefore is being put outside. If the dog is outside probably he is going to bark but we 
might get confused by another dog’s bark. 

 

 
Figure 22 Bayesian Network - Example 

 
This is essentially our model of a situation and by providing probabilities to any node on 
the graph we can ask the network to provide us the probabilities of some events given 
our evidence. For example what would be the probability that nobody’s home given that 
the light is off and the dog outside [46]. This methodology is called inference.[47] 

There are a number of ways we can inference probabilities in Bayesian networks and 
usually we prefer an approximate inference of the network since it’s not so hard or 
heavy computationally to do so especially if we have a large graph that has many 
nodes.  

In the scope of this system a library for inference on Bayesian networks is being used 
so that the user can use such abstract models to gain a more concrete possibility of an 
outcome of interest. 

This library is called Jayes [48] and is open licensed and under the auspices of the 
Eclipse project. This library does not however provide the ability to train the network by 
feeding it data. It is left to the user when creating the nodes and its descendants or 
ascendants to provide the probability distribution of each event. 

We have integrated this library on the Fusion engine on a single value algorithm that 
requires as input on each step a subset of the model nodes as evidence and outputs 
the node we would like to inference upon.  



A STORM architecture for fusing IoT data 

Dimitrios A. Zampouras  63 

 

For example a user connects some sensor streams such as humidity, temperature, rain 
and foggy levels and would like to calculate the possibility of a fire incident or a 
hurricane. By providing the conditional probabilities to the network, he can then infer the 
possibility of such outcomes and apply preventive measures.   

However in order for this algorithm to work some kind of classification of values needs 
to be applied before the data is being fed to the Bayesian network. A temperature 
stream is a stream of continuous numerical values while the Bayesian network requires 
some kind of characterization of the evidence. When creating the Bayesian network 
discrete values of state are being given for each node (e.g. temperature -> {low, 
medium, high}). Therefore a classification of incoming values is needed for the 
Bayesian network. This sequence of algorithms expected ultimately imposes some kind 
of logic recipe as previously discussed. One solution to this problem would be to 
integrate the classification algorithm to the Bayesian network but this is left for future 
work. 

 

5.4 Stream Mergers  

Stream merging is an important aspect of any stream computing engine. When 
incoming streams are being processed in a system there is many times the requirement 
for them to merge in order to process a certain subset of their value together or to join 
those streams. Storm provides many ways to group or join streams, such as windowed 
bolts where you can choose to merge an unbounded stream of data into finite sets 
based on some criteria such as time. A window can be conceptualized as an in memory 
table in which values are being added and removed based on a set of policies [49].  

Storm provides two kinds of window functionalities that the user can implement: sliding 
and tumbling windows [50].  

Each window is being specified with the following two parameters: 

1. Window length 
2. Sliding interval 

In a sliding window, tuples are grouped within a window that slides across the data 
stream according to a specified interval. A time-based sliding window with a length of 
ten seconds and a sliding interval of five seconds contains tuples that arrive within a 
ten-second window. The set of tuples within the window are evaluated every five 
seconds. Sliding windows can contain overlapping data; an event can belong to more 
than one sliding window. 

In a tumbling window, tuples are grouped in a single window based on time or count. A 
tuple belongs to only one window. For example a time-based tumbling window with a 
length of five seconds would be firing up at the end of the fifth second interval 
evaluating all contained values that arrived during the beginning of this window’s count 
up to the fifth second (0,5]. After that the window would fire up again at the 10th second 
(5,10] evaluating any received tuples during this durations, none of the windows overlap 
and the same tuple cannot be present on both windows. Each segment represents a 
distinct time segment. 

Storm supports the configuration of such windows based on count and time. A window 
(sliding or tumbling) can be configured to fire up on every x incoming elements or on 
every x seconds. Furthermore the time evaluation can be extracted from the elements 
of the streams or stream if a timestamp field is present which has to be specified to the 
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window manager. This way we can group or evaluate windows of data that for us are 
considered discrete time events (e.g. every one second).  

Based on this we have created a merger algorithm that can merge the contents of 1 to 
N streams based on time. This algorithm simply gets a window configured by the user 
and merges all incoming values into an outgoing tuple that contains information about 
the stream or streams that they came from and the actual values.  

This significantly changes the way this fusion engine handles input and output so far, 
nevertheless it greatly needed when processing streams. The transformation imposed 
by this algorithm has led to consider alternative approaches on how this engine should 
handle incoming and outgoing bolt data. 

 Those were some of the main algorithms contained in the Fusion engine package and 
surely more are to come. Algorithms such as min/max, threshold, fields filtering and 
others are not being mentioned since they are considered utility algorithms.    
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6. FUSION TUPLES 

 

The main issue that we have encountered when designing the framework was that by 
chaining algorithms, with each algorithm applying a transformation on the incoming 
fields at each step, compatibility issues arose between the chained algorithms. 

Storm although it does enforce specific type of data structure being passed between the 
components in the system it does not stop the programmer from creating his own. As 
we have already mentioned Storm’s basic data type is a Tuple, which is essentially a 
wrapper of any kind of object that addresses elements in a sequence or by name. A 
tuple actually is a list of objects that can be accessed as a map as well. Clearly the 
preferred way of Storm would be to avoid any complex data structures being passed 
into the topology since it is a real time processing engine and at those systems speed is 
of the essence. Apart from that, Storm offers various types of grouping that would 
become useless where more complex structures to be used. In our situation however, 
with the plethora of algorithms we would like to support it is difficult to support extreme 
transformations of fields between all algorithms.  

For example the merger algorithm completely transforms the incoming messages 
producing a map of streams to values since it is responsible for merging streams. This 
is a complete overhaul of the enclosed objects in the tuple; up until this algorithm an 
array of elements was sufficient, but after this algorithm we now have an enclosed map 
inside the tuple and essentially only one field declared in the tuple: this map. Those 
kinds of transformations potentially can be the source of many issues and bugs when 
designing a generic framework that can essentially take care of connecting any 
algorithm. 

Although passing complex data structures can reduce the speed of the system we might 
consider trading this speed for this kind of flexibility. Therefore given any algorithm that 
applies a transformation in the incoming fields the data structure we have implemented 
is able to hold values of many streams as well as information about them. 

Therefore a map of stream names which point to a list of values and a map of metadata 
for each stream, which point to field metadata, has been created. This is called a fusion 
tuple and can potentially solve all data aggregation and transformation functions that 
can happen during the flow of the topology.  

With the use of such structure we can emit a single array from a stream, essentially 
what we called before a tuple, but many as well. At the same tuple we can insert many 
or one value from each stream. For accessing the values included we must consult the 
metadata info about the stream. The example that follows shows the data structure: 

public class FusionTuple { 
    Map<String, List<Values>> valueMap; 
    Map<String, List<Meta>> metaMap; 

} 

 
 

The value class is a list of Objects and the Meta class is a class containing a triplet that 
indicates the field name and the class of a contained object in a stream. 
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For example if we had two streams(stream-1, stream-2)  with fields [“id”, “value”, 
“timestamp”] and [“id”, “value”, “timestamp”, “max”] we can now populate this data 
structure to hold values of both streams. The metadata of each stream would indicate 
what their field names are and what their class is.  

Of course we could imagine another data structure that could hold this kind of 
information and many more might be chosen to be tested in case we were to fully adopt 
this approach. Note that at this point if we choose to work with any kind of more 
complex structure such as this we lose the ability to do grouping on the fields, which is a 
handy aspect of storm. Right now simple tuple messages are supported and this kind of 
messaging as well, mainly for testing how these two approaches could work in terms of 
speed. 

Slight modifications to each algorithm have been made to support this kind of data 
structure and we compare the speed of the system using both ways. Notice that now 
that we use a complex data structure serialization and deserialization should be used to 
avoid concurrent modifications of the same object (if storm is deployed on a local cluster 
a local transfer is being used between bolts- threads) [51].  

At the next figure (Figure 23) we measure the average time needed for each object to 
be parsed using the pattern we have specified and also we measure the average 
construction time of each fusion tuple object. There were 10 rounds conducting the 
same operations and in each round 200.000 objects were being created up a total of 
two million. After the java optimizer kicks in we see a significant time decrease for each 
object creation. This chart shows that the approach for creating fusion tuples which 
contain also some metadata about what is the stream name that produced this object, 
its fields etc, effectively doubles the processing time for each tuple when compared with 
the simple tuple approach which is only encumbered with the parsing phase. 

 

Figure 23 Parsing time and fusion tuple creation time 
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7. TOWARDS A MORE HOLISTIC APPROACH 

 

One of the main problems encountered when designing and implementing the 
framework on top of Storm is the data connection among the algorithms implemented. 
This is major issue that can be approached in many ways.  

Any algorithm by default is data-centric and by this we mean that when a generic 
stream is inserted into the system, some extra information is needed for each algorithm 
to operate. CUSUM algorithm for example needs to know the field that is going to 
monitor and calculate the upper and lower cumulative sums. This is solved by indicating 
to each algorithm one, or many, depending on the algorithm fields of interest.  

The main issue arises when data is forwarded from one algorithm to another. As we 
have already stated each algorithm applies a transformation to each incoming tuple. 
Some algorithms might be called to work on each incoming tuple, while others might 
need a set of values to work on. Although the set of algorithms we have worked on so 
far is limited, we should take into consideration that even more algorithms will be added 
and those algorithms might require even more unique transformations to the data format 
they require in order to operate correctly.  

This greatly creates the need for a more general approach in order to be able to 
incorporate any algorithm without requiring any extra changes to the underlying 
framework.   

So far we have seen two approaches:  

1. The main approach, where we use simple variables wrapped inside of a tuple. In 
this approach the problem was that there was a lot of effort maintaining the fields 
declared and forwarding them across the declarer of each participating bolt. 
Furthermore it becomes really perplexing when using this scheme to implement 
Stream merging and other much more complex transformations to the streams. 
This would require for anyone implementing a new algorithm to essentially know 
all the formats emitted by each algorithm, that would make sense to be chained 
with his algorithm, and the same applies to every algorithm following. 
 

2. The Fusion tuple approach, where we have designed a flexible but large data 
structure to emit at each step. This data structure potentially can withstand many 
algorithm transformations but is has an increased space complexity. 
Subsequently it creates much more load to the system and sometimes this data 
structure might contain simple values that could be emitted using the main 
approach. Additionally this approach disables some of Storm’s handy features 
such as fields grouping that will definitely prove to be useful when deploying to 
clusters and scaling the topology. 
 

While both approaches could be used with their downsides this is an interesting topic of 
discussion on how could we implement a structured data communication between the 
algorithms so that we could minimize the impact of both of those approaches.  

One approach would be to keep the data structures as simple as possible and 
leveraging Storm’s functionality while at the same time going to more complex data 
structures as the need arises.  
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If we could characterize each stream according to what kind of data structures it 
contains we could implement a mapping of algorithms to specific stream types. This 
would essentially create a set of families of algorithms with their corresponding 
incoming stream type (i.e. normal tuples) vs more complex streams and types contained    
(multi-value stream, after a merger algorithm). This approach is being shown on figure 
24. 

Therefore, one solution that might be possible would be to fine grain the communication 
between the algorithms at an early stage of the topology where the streams are not 
joined and fairly simple by using Storm’s approach, by passing simple variables inside 
the tuples and as the need arises we could advance to more complex schemes. Each 
algorithm depending on its data-in scheme could be allocated on sets of families that 
could belong to. 

Another approach which can take advantage of simple and complex data schemes is 
inspired from the adapter design pattern (sort of). Instead of enforcing the creation of a 
common “language” or families of “languages” (stream with specific data types) we 
could make each algorithm “adapt” to the next algorithm chained. To do so each 
algorithm should be able to encapsulate at least one “data translator” or “formatter” 
whose sole purpose is to transform each tuple, or windows of tuples, to the format that 
the next algorithm is able to understand.  

 

To facilitate this change when 
implementing an algorithm we must 
implement a formatter as well, 
responsible for structuring each 
incoming value(s) to the preferred way 
of the algorithm. Each algorithm 
chained with another will use the 
formatter of the next algorithm. After the 
first algorithm has finished its work on a 
tuple, or on a tuple window, those 
values will be offered to the 
formatter(the formatter of the next 
algorithm) in order to transform them to 
the format that the next algorithm 
expects. This approach can support the 
use of simple schemas but more 
complex ones as well. An example is 
being shown on Figure 25. Each 
formatter that the algorithm holds is the 
respective formatter specified by 
Algorithm A, B or C.  

However, transforming each tuple with 
the use of formatters further adds to the 
complexity of the system. Furthermore 
the use of formatters should not be 
abused; when someone decides to 

implement a new algorithm, he should consider first using the existing formatters 
already implemented rather than opting for a new one that will create really complex 
structures.  

Figure 24 Classification of algorithms and streams 
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At this point it was made really clear from the design of the framework that there is no 
magic solution or a way we could make each algorithm work regardless of what data 
structure it expects. We have proposed some approaches that we consider that could 
be able to solve this connectivity issue, however this is a work in progress. Other 
approaches more complex will be proposed and hopefully by comparing each one the 
optimal will be selected. 

A
B
C

Algorithm

Formatters
A, B, C

Algorithm - A

Algorithm - B

Algorithm - C

Formatted 
tuples 

specifically for 
each algorithm

 

Figure 25 Algorithms and formatters 
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8. EXPLORING STORM’S FULL POTENTIAL 

 

Up to now we have visited the storm internals in terms of message passing, topology 
creation all in the scope of making algorithms able to connect with each other in a 
generic way. However Storm is much more; Storm is a distributed system that is 
scalable. Every bolt is essentially a thread running and we can scale the number of 
threads that each bolt can have. Scaling however without taking into consideration in 
our case what is the enclosed algorithm can have fatal results. Algorithms that are 
stateful cannot be easily scaled to a parallelism bigger than one; but that always 
depends on the topology we have created. 

Algorithms such as CUSUM and Shewhart that depend on the previous values for 
historical data cannot be scaled since Storm when having many instances of a bolt – 
therefore of an algorithm in our case, will emit tuples to the most suited instance by 
using a round robin approach while taking in consideration various aspects of the 
thread, such as its load etc. That means that if we have for example a CUSUM 
algorithm with parallelism of five, the sequential values arriving at the previous 
component will not be emitted to the same instance of the CUSUM algorithm therefore 
we will definitely end up with data that are not logically consistent.  

There are some approaches that can be used to solve each problem but they are most 
dependent on the algorithm enclosed and the topology graph. Other algorithms that are 
stateless can be scaled without fear of ending up with inconsistent data such as 
thresholding algorithms, Bayesian networks etc. 
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9. CONCLUSION 

 

Storm so far has proven a viable solution for what we have envisioned. The many 
turning knobs and parts it has offer great versatility so that a framework can be built on 
top of it. In our case this versatility can be a problem when we would like to shield the 
user from creating a topology that would not have much meaning or could lead to 
potentially incorrect conclusions.   

There many aspects that still need to be addressed so that this framework could be 
considered ready to be used and this is a work in progress. Each time we encounter a 
new algorithm that we would like to integrate could potentially break the existing design 
and be forced to readapt the entire framework to a more general approach. There are 
also many open issues that need to be resolved such as parallelism and deploying 
topologies on a cluster and even more will arise.  

Until now this generic framework seems to be working fine and shows great potential for 
growth and could become the fusion engine we have envisioned. Future work on this 
fusion engine would certainly require the design of a graphical user interface where the 
user would just drag and drop algorithms in order to create the desired topology. Logical 
validation of a topology would be something greatly needed in order to help 
inexperienced users with the algorithm suite that we would offer. The same could 
happen with parallelism hints. 

Overall this is a work in progress that shows great potential and was really interesting to 
try to transform an existing streaming engine into something much more. 
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ABBREVIATIONS - ACRONYMS 

 

UOA  University of Athens  

IoT Internet of Things 

5G Fifth generation mobile networks 

4G Fourth generation mobile networks 

HDFS Hadoop Distributed File System 

YARN Yet Another Resource Negotiator 

RDD Resilient Distributed Datasets 

SQL Structured Query Language 

API Application Programming Interface 

CPU Central Processing Unit 

DAG Directed Acyclic Graph 

JVM Java Virtual Machine 

UI User Interface 

CLI Command Line Interface 

DSL  Domain Specific Language 

DPE Data Processing Engine 

YAML YAML Ain’t Markup Language 

Args Arguments 

CUSUM Cumulative Sum Control Chart  
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