A semantic framework for UAV interoperability based on STANAG 4586 standard

MSc thesis presentation
Konstantina A. Zafeiriadou
S.N: M1450

Supervisor:
Stathes Hadjiefthymiades, Professor

Athens, October 2018
Outline

• Introduction
• Problem Description
• Proposed Framework
• Application
• Implementation Details
• Simulation Results
• Conclusion
Introduction

• An Unmanned Aerial Vehicle (UAV) aims for the accomplishment of mission objectives.
 ▫ operates autonomously or under remote control
 ▫ alternative to manned aircrafts
 • cost effective
 • low risk
• However, a UAV is more than a mechanical device designed to accomplish a task.
 ▫ Is part of a combined service environment of various deployed UAV systems (UAS)
Problem Description

• Current UAS are “stove-piped”
 ▫ proprietary software and architecture
 ▫ system-specific datalinks
 ▫ unique communication protocols

• Heterogeneity of diverse UASs
 ▫ impedes communication
 ▫ hinders cooperation
 ▫ requires complex infrastructures

Interoperability is emerged as the most important policy to be achieved.
The concept of Interoperability

- Interoperability is characteristic of a system that can work with other systems
 - without restrictions
 - by the use of standards
- Armed Forces defines military interoperability
 - ability of nations to operate effectively together
 - achievement of a common task
- NATO proceeded to specification of STANAGs
 - address technical issues for UAV interoperability
NATO STANAG 4586

- The STANAG 4586 standard
 - specifies the architecture of an interoperable UAV Control System (UCS)
 - interfaces
 - functional elements
 - defines DLI and CCI interfaces
 - common data elements
 - generic message formats
 - Increases efficiency to mission accomplishment
 - mutual control
 - integration
 - joint utilization of information
Thesis Proposal

• **Objective**
 ▫ Implementation of a STANAG 4586 compliant Ground Control Station (GCS)
 • capable of communication with different UAVs and GCSs
 • via STANAG DLI protocol

• **Solution**
 ▫ A semantic framework for STANAG message (de)serializing
 • based on an OWL ontology
 • enables semantic interoperability between UAS elements
 • leveraged by STANAG 4586 specification
 • applicable by different UAV platforms e.g. ROS, JAUS, MAVLINK

• **Application**
 ▫ A proof-of-concept system implementation that sends STANAG messages to control a MAVLink protocol UAV (MAV)
 • STANAG to MAVLink translation
 • borrows from UCS architecture

• **Challenges**
 ▫ Analysis of STANAG 4586 specification
 • extensive documentation
 • avionics, military and technical terminology
 ▫ STANAG to MAVLink bridge implementation
 • familiarization with MAVLink protocol
 • STANAG to MAVLink message mapping
 • not direct match
 • much of STANAG information is redundant to MAVLink
Domain Knowledge

- **Methodology**
 - Knowledge acquisition
 - about concepts on the domain of UAV systems
 - collection of informational sources
 - NATO STANAG 4586 specification document
 - technical manuals and STANAGs e.g. STANAG 7085
 - Specification and vocabulary construction
 - name entities extraction for the ontology design
 - based on the terminology of STANAG 4586
 - best practices for the naming of terms
 - Conceptualization
 - Models the domain concepts and identifies the relations between them
 - Definition of axioms and constraints
 - Universal, existential, cardinality and hasValue restrictions
 - Equivalent and disjoint classes
 - Specialization and field-specific relation types e.g. identity, reversibility
 - Ontology evaluation
 - By domain experts and automated reasoning tools (e.g. FaCT++)
 - Criterions e.g. clarity, consistency, coherence and minimal encoding bias
Ontological Model

ONTO_STANAG_4586 ontology

- A common formal vocabulary for:
 - architecture of a UCS
 - messages exchanged with UAV/external agents
 - level of interoperability each communication achieves
 - operational elements of a UAS

- Developed for use in the message communication between a GCS and a UAV
 - describes the structure of a message type and the information it stores

- Expressed in OWL
 - added expressiveness compared to other representation languages e.g. UML
 - reliable check using OWL reasoners

- Edited using Protégé

- Some metrics: 116 concepts, classified in 25 main classes, related by 45 object properties and 30 data attributes
The ONTO_STANAG_4586 ontology
STANAGOntoLib (1/2)

- A Semantic Web library for (de)serializing DLI messages
 - an encoded STANAG message as result of serialization process
 - given the input control data
 - a structure with the message’s data as result of deserialization process
 - given the encoded STANAG packet

- Enables communication between diverse UAVs
 - by exchanging STANAG messages

- Exploits the ONTO_STANAG_4586 ontology
 - to extract the schema of a certain message type
 - by SPARQL queries execution
Implementation

- A Java library with dependencies of:
 - .owl file of ONTO_STANAG_4586 ontology
 - ONT-API framework
 - a implementation of OWL-API over Apache Jena
 - solves the request of SPARQL query execution on an OWL ontology graph

- Conformed to the STANAG 4586 specification for the representation of data
 - standards e.g. time or earth position references
 - packaging, i.e. byte ordering
 - format e.g. the ID number of a UAS element
 - metric units
System Architecture

[Diagram showing a system architecture with various components and protocols.]

Operator -> <device> -> <web browser> -> <<Application Server>> -> GlassFish Server Container

<execution environment> -> Android

DroneApp.apk

<<components>> STANAVLib.jar

Use

<device> -> <protocol> -> UDP/5445

MA/Link msg

<device> -> <protocol> -> HTTP

<device> -> <protocol> -> STANAO msg

<<components>> STANACOntoLib.jar

<<components>> ontology.owl

Use

Java SE

<<execution environment>> -> VSMProcessApp.jar
System Components

CUCSWebServer

- A web graphical interface that imitates a STANAG 4586 compliant GCS
 - enables operator to control different types of UAVs
 - by sending the appropriate DLI messages

- Integrates functionality of STANAGOntoLib

- Communicates with VSMProcessApp over UDP/IP
 - through transmission of STANAG packets
System Components

VSMProcessApp

- An intermediate processing node for vehicle-specific operation
 - STANAG to MAVLink message translation
 - First-half matching – from a STANAG message to a STAMAVMessage object

- A Java UDP client/server
 - receives encoded STANAG messages
 - transmits vehicle-specific packets

- Integrates
 - STANAGOntoLib
 - STAMAVLib

- Overcomes compatibility problems of STANAGOntoLib’s integration to an Android-based mobile device
System Components

STAMAVLib

- A STANAG to MAVLink mapping library
 - definition of STAMAVMessage class
 - a common interface
 - implements Java Serializable class
 - a translation bridge from STANAG to MAVLink
 - binary data unit with control data of a STANAG message

- Translation issues:
 - not a 1 to 1 matching
 - different parameters for each protocol
 - much of STANAG information is redundant to MAVLink

- Enables communication
System Components

DroneApp

- An android application that acts as a hand-held mobile GCS
 - communicates with the UAV’s autopilot
 - via MAVLink protocol
- Performs the “second half” of STANAG to MAVLink translation
 - from a STAMAVMessage object to a MAVLink message
- An UDP server:
 1. receives serialized STAMAVMessage packets
 2. implements the matchings based on the type of serialized object
 3. generates the MAVLink messages and sends them to the UAV
- Integrates
 - STAMAVLib
 - DroneKit SDK
- DroneApp GCS implements Waypoint sub-protocol of MAVLink
Evaluation

- Simulation of a flight mission in which operator controls a quadcopter MAVLink protocol UAV by sending STANAG messages
 - using SITL simulator
 - MAVProxy

- A predefined flight scenario
 - based on the capabilities of implemented software

- Experimentations check system’s:
 - proper functioning

- Positive flight tests validate system for:
 - feasibility
 - stability during protocol translation
Conclusion (1/2)

Contributions

• An ontology-based system by means of Semantic Web technologies
 ▫ addresses the achievement of interoperability among UAVs
 ▫ proposes an innovative approach to the development of a UCS

• ONTO_STANAG_4586 ontology
 ▫ comprehensive representation model
 • consistent and logically sound based on reasoning tools applied
 • first attempt in recent research
 ▫ applicable in the STANAG 4586 message communication

• STANAMGOnLib
 ▫ an important asset for compliance with STANAG 4586
 • enables the ability of interpreting STANAG messages
 • increases semantic interoperability
 • integrable as external library
Conclusion (2/2)

Contributions (cont’d)

• Verification of STANAG 4586 practicability
 ▫ achievable communication protocol, yet highly complex
 • heavily demanding in terms of compliance
 • strong investment
 ▫ a network-enabled architecture without considering constraints in communication

Future Work

• Extension of ONTO_STANAG_4586 ontology with domain knowledge of existing ontologies
• Integration of the already implemented STANAG to MAVLink bridge
 ▫ system performance improvement
Questions?
Thank you ☺