

NATIONAL AND KAPODISTRIAN UNIVERSITY OF ATHENS

SCHOOL OF SCIENCE
DEPARTMENT OF INFORMATICS AND TELECOMMUNICATIONS

PROGRAM OF POSTGRADUATE STUDIES

MASTER'S THESIS

Integration of ROS, Turtlebot, RPLIDAR, RFID technologies and
algorithm implementation for navigation and RFID tag

detection in a warehouse.

Paris A. Ioakeimidis

Supervisor Hadjiefthymiades Stathes, Associate Professor

ATHENS

SEPTEMBER 2018

ΕΘΝΙΚΟ ΚΑΙ ΚΑΠΟΔΙΣΤΡΙΑΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ

ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ
ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ

ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ

ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ

Ενσωμάτωση ROS, Turtlebot, RPLIDAR, RFID τεχνολογιών και
υλοποίηση αλγορίθμου για την πλοήγηση και ανίχνευση

ετικετών RFID σε αποθήκη.

Πάρης Α. Ιωακειμίδης

Επιβλέπων: Ευστάθιος Χατζηευθυμιάδης, Αναπληρωτής Καθηγητής

ΑΘΗΝΑ

ΣΕΠΤΈΜΒΡΙΟΣ 2018

MASTER'S THESIS

Integration of ROS, Turtlebot, RPLIDAR, RFID technologies and algorithm implementation
for navigation and RFID tag detection in a warehouse.

Paris A. Ioakeimidis

Α.Μ.: Μ1397

Supervisor: Hadjiefthymiades Stathes, Associate Professor

September 2018

ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ

Ενσωμάτωση ROS, Turtlebot, RPLIDAR, RFID τεχνολογιών και υλοποίηση αλγορίθμου για
την πλοήγηση και ανίχνευση ετικετών RFID σε αποθήκη.

Πάρης Α. Ιωακειμίδης

Α.Μ.: Μ1397

ΕΠΙΒΛΕΠΩΝ: Ευστάθιος Χατζηευθυμιάδης, Αναπληρωτής Καθηγητής

Σεπτέμβριος 2018

ABSTRACT

During recent years, we have seen a rapid development in robotic automatic systems
which without the human intervention, operate in different environments and perform
specific tasks according to their specifications and the missions assigned to them. This
thesis attempts to use such a robotic system, namely Turtlebot 2 which uses ROS, in
combination with two other technologies. The two technologies used and integrated are
LIDAR which is a laser pulse emission technology for mapping the environment which is
surrounding the robot and RFID technology for radio frequency identification to identify
different objects around the robot. Furthermore an implemented algorithm in Python
alongside ROS is presented for assigning a mission to the Turtlebot 2 robot for the
autonomous navigation indoors. During the Turtlebot's 2 robot path, data is collected using
RFID antennas from the RFID tags which represent the objects on the shelves of a
warehouse. Finally the collected data can either be watched live during the collection
procedure or stored for further future processing.

SUBJECT AREA: Robotics

KEYWORDS: Robotics, Turtlebot, Navigation, ROS, LIDAR, RFID Technology,
Warehouse.

ΠΕΡΙΛΗΨΗ

Τα τελευταία χρόνια έχει παρατηρηθεί ραγδαία εξέλιξη στα ρομποτικά αυτόματα
συστήματα, τα οποία χωρίς την παρεμβολή του ανθρωπίνου παράγοντα ενεργούν σε
διάφορα περιβάλλοντα και εκτελούν συγκριμένα καθήκοντα ανάλογα με τις προδιαγραφές
και τις αποστολές που τους έχουν ανατεθεί. Σε αυτήν την διπλωματική εργασία γίνεται
προσπάθεια χρήσης ενός τέτοιου ρομποτικού συστήματος και συγκεκριμένα του Turtlebot
2 που χρησιμοποιεί το ROS σε συνδυασμό με ακόμα δύο τεχνολογίες. Οι τεχνολογίες
αυτές που χρησιμοποιούνται και ενσωματώνονται στο ρομποτικό σύστημα είναι η τεχνική
LIDAR εκπομπής παλμικής ακτινοβολίας λέιζερ για την χαρτογράφηση του περιβάλλοντος
που περιβάλλει το ρομπότ και η τεχνολογία RFID για την ταυτοποίηση μέσω
ραδιοσυχνοτήτων και για την αναγνώριση διαφόρων αντικειμένων που βρίσκονται στο
κοντινό περιβάλλον όπου δρα το ρομπότ. Στην συνέχεια παρουσιάζεται ένας αλγόριθμος
σε Python και ROS που έχει υλοποιηθεί για την εκτέλεση της αποστολής που έχει ανατεθεί
στο Turtlebot 2 ρομπότ για την αυτόνομη πλοήγηση του σε εσωτερικό χώρο. Κατά την
διάρκεια της διαδρομής που ακολουθεί το Turtlebot 2 ρομπότ συλλέγονται δεδομένα με την
βοήθεια των RFID κεραιών από τις RFID ετικέτες που αντιπροσωπεύουν τα αντικείμενα
στα ράφια μιας αποθήκης. Τέλος, τα δεδομένα που συλλέγονται μπορούν είτε να
παρακολουθούνται ζωντανά κατά την διάρκεια της συλλογής τους είτε να αποθηκεύονται
για περαιτέρω επεξεργασία τους στο μέλλον.

ΘΕΜΑΤΙΚΗ ΠΕΡΙΟΧΗ: Ρομποτική

ΛΕΞΕΙΣ ΚΛΕΙΔΙΑ: Ρομποτική, Turtlebot, ROS, Πλοήγηση, LIDAR, RFID Technology,
Warehouse.

DEDICATIONS

Dedicated to my family, my friends and all who supported me all these months during my
master studies at the National and Kapodistrian University of Athens at the Department of
Informatics and Telecommunication.

THANKS

I would like to express my particular gratitude to supervising professor Stathes
Hadjiefthymiades and his whole team at his lab at Department of Informatics and
Telecommunication, at the National and Kapodistrian University of Athens, who supported,
advised and tolerated me during implementation and writing of this master thesis.

CONTENTS

PROLOGUE – FOREWORD...18

1.INTRODUCTION...19

1.1.Current Situation..20

1.2.Why this work is important...21

1.3.Questions answered in this master thesis...21

1.4.Hypothesis...21

1.5.Methodology algorithm implemented for the navigation and RFID data collection...21

2.PROBLEM DESCRIPTION..23

3.PREVIOUS WORK...25

3.1.Work 1: EDL...25

3.2.Work 2: E-Pres..27

3.3.Work 3: Robotic Navigation...29

3.4.Work 4 Navigation Tuning...30

3.5.Work 5: RFID Technology..30

4.PROPOSED SOLUTION..32

5.CONCEPTS AND TECHNOLOGIES DESCRIPTION...35

5.1.Robotics...35

 5.1.1 Robots...36

5.2.Robotic Frameworks..36

5.3.Warehouses...39

5.4.Robots in Warehouses..39

5.5.Sensors..41

5.6.ROS – Robotic Operating System...42

 5.6.1 Why ROS...43

 5.6.2 ROS Distributions..44

5.7.Turtlebot...45

 5.7.1 Turtlebot 2..47

5.8.Unix – Linux – Ubuntu Operating System...49

5.9.ROS Basics...49

 5.9.1 ROS filesystem..49

 5.9.2 Building packages - Catkin..50

 5.9.3 ROS packages..50

 5.9.4 ROS Graph concepts..51

 5.9.5 ROS Services and Parameters...51

 5.9.6 ROS publisher/subscriber...51

 5.9.7 ROS service/client...52

 5.9.8 ROS dependencies...53

 5.9.9 ROS basic commands...53

 5.9.10 ROS actionlib...54

 5.9.11 ROS parameters...55

 5.9.12 Slam..55

 5.9.13 ROS Simulations...55

 5.9.14 ROS Gazebo...56

 5.9.15 ROS RVIZ..57

5.10.ROS Navigation Stack...57

 5.10.1 Transform Frames(tf) software library...58

 5.10.2 Sensor Sources...59

 5.10.3 Odometry Source..59

 5.10.4 Base Controller..60

 5.10.5 Map Server..60

 5.10.6 AMCL (Adaptive Monte Carlo Localization approach)....................................60

 5.10.7 Move Base...61

 5.10.8 Base Local Planner...62

 5.10.9 Global Planner...63

 5.10.10 Clear Costmap Recovery..63

 5.10.11 Rotate Recovery..63

 5.10.12 Costmap_2D..63

 5.10.13 nav_core..65

 5.10.14 Navfn...66

 5.10.15 Gmapping..66

 5.10.16 ROS Sending Simple Goals..66

5.11.Turtlebot Basics...67

 5.11.1 TurtleBot Navigation Stack..68

6.Turtlebot – ROS Implemented Algorithm for Navigation..70

6.1.Explanation of the desired movement Turtlebot should perform...............................70

 6.1.1 Description of the Algorithm..71

6.2.Steps performed by the navigation algorithm..72

6.3.Schemes, Pictures of the algorithm, RVIZ and Gazebo..74

6.4.RFID Antennas activation and deactivation...77

7.RFID Technology...78

7.1.RFID Antennas..79

7.2.RFID Reader/Module...81

7.3.MTI RFID Reader..81

7.4.RFID Tags..83

7.5.Configuration of RFID Antennas and Reader..84

7.6.Measurements performed with RFID Antennas and Reader....................................85

7.7.Integrating RFID Technology with Turtlebot 2...86

7.8.Mounting RFID Antennas on top of TurtleBot..86

7.9.Other issues related to RFID technology - Problems and concerns about RFID.....87

 7.9.1 Materials interference with RFID technology..87

 7.9.2 Multiple interposed object with RFID tags...88

 7.9.3 Interference of RFID reader/antennas on multiple autonomous robots............89

 7.9.4 Plane and orientation of RFID tags in relation with the RFID reader/antennas89

 7.9.5 Optimal Antenna and Reader Selection..89

 7.9.6 Privacy – Security..89

 7.9.7 RFID Health concerns...89

8.LIDAR Technology..91

8.1.RPLIDAR A2..91

8.2.RPLIDAR versus Kinect..92

8.3.Integrating RPLIDAR A2 with Turtlebot 2..94

8.4.Problems Detected RPLIDAR...97

9.EDL...99

10.Apache Kafka..101

10.1.Why Apache Kafka..101

10.2.Apache Kafka for RFID tags publishing..102

11.RFID TAG – POSITION – PATH – DATA COLLECTED..103

11.1.Publishing RFID Tags on top of Apache Kafka publisher......................................103

11.2.Publishing on a ROS Topic the collected RFID Tags, Goal, and Position.............104

11.3.ROS Logging...105

11.4.Simple File Storage...106

11.5.Simple hash filtering of collected RFID tags...106

12.FINAL RESULT OF ALL SYSTEMS INTEGRATED TOGETHER...............................107

12.1.Experiments...110

 12.1.1 Simulated world experiments..110

 12.1.2 Physical world experiments...113

13.FUTURE WORK, IMPROVEMENTS AND ADDITIONS..118

13.1.Better implementation and design of custom ROS path planner algorithm..........118

13.2.Experiment with other systems for better getting more complete experiment results
and evaluation...118

13.3.Experiment in different environments..118

13.4.Additional sensors...118

13.5.Intruders detection...118

13.6.Positions with tags usage of two different tag types (1.products, 2.positioning)...119

13.7.Using GPS or Wifi positioning of the robot in the warehouse...............................119

13.8.A commercial completed Web/Mobile/Desktop Application for live monitoring, data
filtering, revision of saved RFID data..119

13.9.Implementation of a complete package for RFID and ROS integration (if possible)
...119

13.10.Implementation of an algorithm for detection of what was expected and what was
really detected in the warehouse...119

13.11.Implementation of an algorithm for automatic RFID antenna and tag direction
detection..119

13.12.Automatic antenna activation and deactivation...120

14.CONCLUSION..121

15.ABBREVIATIONS - ARCTICS – ACRONYMS..122

APPENDIX I...124

I.1Technologies used in this master thesis..124

I.2Linux 14.04 LTS...124

I.3Installation and Configuration of ROS Indigo Environment.......................................124

I.4ROS Indigo Installation..125

I.5Turtlebot Gazebo...126

I.6Move Turtlebot in simulated world...128

I.7Creating Simulation of warehouse with Turtlebot in GAZEBO..................................128

15.1.Create a map of previously created simulation...129

I.8Navigating in previously created map...130

I.9Create a map of a physical world..130

I.10Navigate in created map..130

I.11RVIZ...131

I.12Integrating RPLIDAR A2 with Turtlebot 2..132

I.13Mounting RPLIDAR A2 on top of Turtlebot 2...137

I.14ERROS – WARNING – PROBLEMS..139

I.15Running Turtlebot in physical world...141

I.16Giving permissions to USB MTI RFID RF Module..141

I.17Command for running Kafka in Linux..141

I.18Implemented Algorithms..142

REFERENCES...143

LIST OF FIGURES

Figure 1: Turtlebot 2 https://www.turtlebot.com/turtlebot2/..19

Figure 2: RPLIDAR A2...20

Figure 3: Kathrein Wide Range 70 degrees Antennas https://www.kathrein-
solutions.com/products/hardware/rfid-antennas/wide-range-70-antennas.........................20

Figure 4: MTI RFID RF Module...20

Figure 5: RFID tag inner view, source: https://simple.wikipedia.org/wiki/File:EPC-RFID-
TAG.svg..20

Figure 6: Representation of the Turtlebot with RFID technology, Lidar, and Laptop running
ROS..34

Figure 7: Autonomous vehicle in space, source: https://pixabay.com/en/mars-mars-rover-
space-travel-robot-67522/..35

Figure 8: ASIMO robot, source: https://en.wikipedia.org/wiki/File:HONDA_ASIMO.jpg.....36

Illustration 9: Swisslog Robot, source: https://www.youtube.com/watch?v=Z-n942tutXY. .41

Figure 10: Sensors, source: http://www.efxkits.com/blog/various-types-of-sensors-
applications/...42

Figure 11: Indigo ROS logo, source: http://wiki.ros.org/Distributions..................................45

Figure 12: Turtlebot Robots of different types. Turtlebot 2 is used in this work, source:
http://wiki.ros.org/Robots/TurtleBot..47

Figure 13: This pictures shows how the communications is performed between the client
and server application, source: http://wiki.ros.org/actionlib...54

Figure 14: In this diagram is presented the organization of the ROS Navigation Stack.....57

Figure 15: This picture presents an example where a laser was installed on top of a robot
so a tf library was used to get the translational offset that creates a relation between the
base_link and the base_laser frame. Source:
http://wiki.ros.org/navigation/Tutorials/RobotSetup/TF..59

Figure 16: Example of how .yaml format should be organized, source:
http://wiki.ros.org/map_server..60

Figure 17: This picture shows the default recovery behaviors that move_base apply,
source: http://wiki.ros.org/move_base...61

Figure 18: Representation of trajectory planning made by the base local planner,
source:http://wiki.ros.org/base_local_planner...63

Figure 19: In this picture are observable different types of cells in a costmap. red:

obstacles, blue:inflation around the obstacle, hexagon:robot footprint. source:
http://wiki.ros.org/costmap_2d...64

Figure 20: In this picture is presented a map in RVIZ. Black dot: Turtlebot, black lines:
obstacles (static map), light blue inflation, etc...64

Figure 21: Five different symbols for the costmap values are defined. Lethal, Inscribed,
Possibly circumscribed, Freespace, and Unknown costs. Depending of the distance from
the object and the decay value which is used difined,all values are assigned between the
Freespace and Possibly Circumscribed cell. Source: http://wiki.ros.org/costmap_2d?
distro=indigo...65

Figure 22: This picture presents the parts of ROS Navigation stack that adhere from
nav_core interface, source: http://wiki.ros.org/nav_core?distro=indigo..............................66

Figure 23: Robot movement first approach...70

Figure 24: Robot movement second approach...70

Figure 25: Gazebo simulated world of a warehouse, Turtlebot is visible at bottom corner of
the room...74

Figure 26: PNG picture of the created map representing the GAZEBO simulated
warehouse..75

Figure 27: Simulated map from RVIZ at the moment when robot completed the navigation,
robot returned to (0,0) position..75

Figure 28: Kathrein Wide Range 70 degrees Antennas, source: https://www.kathrein-
solutions.com/products/hardware/rfid-antennas/wide-range-70-antennas.........................79

Figure 29: MTI RFID RF Reader/Module, source:
https://www.mtigroup.com/upfiles/e_pro_tb01332508202.pdf...80

Figure 30: Typical MTI RFID Reader/Module Application Architecture, source: MTI RU-824
RFID Reader/Module Command Reference Manual Version 3.3, https://github.com/mti-
rfid/RFID_Explorer/blob/master/MTI%20RU-824%20RFID%20Module%20Command
%20Reference%20Manual%20v3.3.pdf..81

Figure 31: Different types of RFID tags, source: https://learn.sparkfun.com/tutorials/rfid-
basics...82

Figure 32: RFID tags used in the project...82

Figure 33: RFID tags placed between the objects of a warehouse, 1,2, and 3 are RFID
tags...87

Figure 34: RPLIDAR A2...91

Figure 35: Room scanned with RPLIDAR A2 mounted on top of Turtlebot represented in
RVIZ tool..91

Figure 36: RPLIDAR is mounted on the top plate of Turtlebot, Kinect is located under

Rplidar..93

Figure 37: Closer look of RPLIDAR and Kinect mounted on Turtlebot...............................93

Figure 38: RPLidar mounted on top of the top plate of Turtlebot..94

Figure 39: Close view of RPLidar mounted on top of the top plate of Turtlebot..................94

Figure 40: RPLIDAR mounted on under the top plate of Turtlebot......................................94

Figure 41: RPLIDAR is mounted under its parent plate "top plate" and turned 180 degrees
y-axes...96

Figure 42: Here is presented the EDL Web Editors, left side is the json editor and on the
right side is the graphical map with the waypoints..98

Figure 43: Simle Text File..99

Figure 44: Custom JSON File..99

Figure 45: EDL JSON File..99

Figure 46: Simple Abstract Apache Kafka Architecture...103

Figure 47: RQT console for showing ROS logs...104

Figure 48: Hash keeps unique RFID tags with the highest value of RSSI........................105

Figure 49: Abstract presentation of all systems integrated together, Green: Hardware,
Blue: software installed or used, Orange: code implemented...106

Figure 50: Data starts as a signal collected from RFID tags and Odometry and ends at
Data Handler Program...107

Figure 51: This picture represents approximately how a Goal is sent to Turtlebot...........108

Figure 52: This picture shows approximately how the final system looks like with all
technologies integrated during the experiments and tests performed..............................109

Figure 53: In this picture we can observe a simulation where no obstacles appear lying in
the corridors of the warehouse..110

Figure 54: Turtlebot avoid the obstacle by moving around the left side of the object.......110

Figure 55: Turtlebot continues moving towards the specified goal...................................110

Figure 56: An obstacle appears on the Turtlebots path...110

Figure 57: All the parts connected ready for the experiment...113

Figure 58: Room where the experiment was performed...114

Figure 59: Right side of the Room were the boxes where positioned...............................114

Figure 60: RFIDs position on different hights..114

Figure 61: Created map of the room where the experiment was performed.....................114

Figure 62: Turtlebot's path is marked with black dots. This picture shows the performed
movement..115

Figure 63: Windows while running the experiment in the left top window it is visible that
10/15 RFIDs tags are detected, RFID tags and Odometry data collected during the
experiment...115

Figure 64: Windows while running the experiment in the left top window it is visible that
15/15 RFIDs tags are detected, all RFID tags are detected..115

Figure 65: Ubuntu distribution 14.04.5 LTS trusty...124

Figure 66: Ubuntu allowed repositories...124

Figure 67: Gazebo simulation turtlebot_empty_world.launch...127

Figure 68: In this picture is presented the warehouse built with GAZEBO.......................128

Figure 69: RVIZ, Turtlebot in the right bottom corner on top of created warehouse map.130

Figure 70: RPLIDAR A2 scan result of a room, read lines represent the wall of the room or
other obstacles...133

Figure 71: Scan results from RPLIDAR A2..133

Figure 72: USB ports with RPLIDAR and KOBUKI mounted..134

Figure 73: RVIZ Turtlebot scan with RPLIDAR A2..137

Figure 74: RVIZ Turtlebot scan with RPLIDAR A2..137

Figure 75: RPLIDAD A2 geometry representing the front the rear and the rotation direction
of RPLIDAR A2 source: https://github.com/robopeak/rplidar_ros/wiki..............................138

LIST OF TABLES

Table 1: Turtlebot 2 Hardware, Software, License, source -
https://www.turtlebot.com/turtlebot2/..48

Table 2: Measurements for RFID tag detection with different type of RFID cards and
different Power Levels..85

PROLOGUE – FOREWORD

This thesis as already described in the abstract is introducing an automated system
created from separate technological parts for navigation and identification of objects. The
challenges that this master thesis tries to solve belong to the field of robotics, automation,
IoT and AI. The final solution is a robotic system consisted from a robotic system
hardware/software, sensors, and technologies for scanning and collecting the desired
data. This system is meant to be used in a warehouse environment where it will enable the
robot to navigate and move in a predefined manner with the help of a implemented
algorithm and other technologies and detect goods lying on the shelves.

Integration of ROS, Turtlebot, RPLIDAR, RFID technologies and algorithm implementation for navigation and RFID tag detection in a warehouse.

1. INTRODUCTION

As technology is developing robots are becoming part of our everyday life especially in the
industrial world. The last years many robotic systems are developed for performing
different tasks autonomously without human intervention in different environments and
sectors. Systems based on IoT – Internet of Things, AI – Artificial Intelligence and
automation solutions are popping up more and more to solve everyday and industrial
problems as technology in this fields evolve. Robot come in different sizes, and shapes
they can vary from very huge robots to very tiny operating on human bodies. Robots
cannot act autonomously without sensors which provide them with data from the external
environment and give the ability to navigate and perform tasks and goals set by humans.
Specifically one of the most well known systems uses is open-source ROS - Robotic
Operating System a flexible framework for developing software for robots and Turtlebot 2
an collection of open-source software personal robot which get benefited from ROS.

For the navigation of the robot a sensor for the mapping of the surrounding is needed. The
technology used in this master thesis is called LIDAR which stands for Light Detection And
Ranging and specifically a sensor called RPLIDAR A2. LIDARs with the help of a laser
measure the reflected pulses with the help of the sensor which first produce a precise map
representation of the its surrounding and finally acts as the eyes of the robot for the
navigation and preventing it from colliding with the objects. LIDARs today are used in many
aspects from mapping and creating a 3D image of an area from an airplane to
autonomously driving cars for constructing a map and avoiding unexpected obstacles.

P.Ioakeimidis 19

Figure 1: Turtlebot 2
https://www.turtlebot.com/turtlebot2/

https://www.turtlebot.com/turtlebot2/

Integration of ROS, Turtlebot, RPLIDAR, RFID technologies and algorithm implementation for navigation and RFID tag detection in a warehouse.

For the scanning of the object located around the robot and specifically around Turtlebot 2
another technology is integrated on top of Turtlebot 2 platform. This technology is called
RFID and it is well known for a long time now but the last year it has become part of our
everyday life and affect it positively. In this work RFID technology is used for the detection
of the objects around our robot Turtlebot 2. The environment where Turtlebot acts could be
a warehouse which hosts thousands of objects/products with RFID tags on top of each
with information about the each object, next the RFID antennas located on top of Turtlebot
scan the RFID tags and locate the objects recording the position of where the object was
located and the RFID tag of the object.

As described previously in this master thesis this three technologies described previously
alongside with other technologies are integrated in a such way to create a final solution for
collecting data and locate the object/products hosted in a warehouse automatically with the
help o a robot called Turtlebot 2, lidar called RPLIDAR, RFID Antennas and RFID Tags.

1.1. Current Situation

Nowdays there are many examples where robots are used in the warehouse sector one
example is Amazon that uses more than 80 thousands robots in its distribution centers to

P.Ioakeimidis 20

Figure 2: RPLIDAR A2

Figure 3: Kathrein Wide Range
70 degrees Antennas
https://www.kathrein-

solutions.com/products/hardwa
re/rfid-antennas/wide-range-70-

antennas

Figure 5: RFID tag inner view,
source:

https://simple.wikipedia.org/wi
ki/File:EPC-RFID-TAG.svg

Figure 4: MTI RFID RF Module

https://www.kathrein-solutions.com/products/hardware/rfid-antennas/wide-range-70-antennas
https://www.kathrein-solutions.com/products/hardware/rfid-antennas/wide-range-70-antennas
https://www.kathrein-solutions.com/products/hardware/rfid-antennas/wide-range-70-antennas
https://simple.wikipedia.org/wiki/File:EPC-RFID-TAG.svg
https://simple.wikipedia.org/wiki/File:EPC-RFID-TAG.svg

Integration of ROS, Turtlebot, RPLIDAR, RFID technologies and algorithm implementation for navigation and RFID tag detection in a warehouse.

perform different tasks like moving goods inside of their warehouses. Also at Alibaba's
smart warehouse robots perform 70 percent of the work and carry huge amounts of
goods up to five hundred kilograms on top of them moving around the Alibaba's
warehouse. The reason this robot systems where introduced to warehouses was mostly
due to e-commerce continues grow, these way the speed and the accuracy of the services
provided was increased. These way better efficiency and accuracy was succeeded. Many
problems could be managed successfully with the help of such robotic systems which offer
automated solutions.

1.2. Why this work is important

This work is not only important because it solves the set problem but because it brings
different technologies together to solve the desired problem. And to give ideas for future
industrial solutions.

1.3. Questions answered in this master thesis

This master thesis tries to answer multiple question that have a great impact on how future
warehouse could be organized and generally how automation, IoT – Internet of Things and
other technologies can all come together to constitute if not a complete solution, for sure a
very attractive proposal for a possible complete solution. Questions like the following are
answered:

(a) What could be a solution for a automatic goods or objects detection and registration
system in a warehouse?

(b) What technologies are available today to solve this problem?

(c) How to combine all the different technologies and integrate them together to get to
the final result?

(d) How each separate technology is important for solving the set problem? Etc.

1.4. Hypothesis

We make a hypothesis that the proposed, combined and used technologies will all work
as a complete solution in this project.

1.5. Methodology algorithm implemented for the navigation and RFID data
collection.

There are several parts of this project where special algorithm and software are built.
Probably the most important is the navigation in the warehouse of the Turtlebot. The
general idea of the proposed algorithm and implemented program is done with the help of
a special framework and collection of tools so an algorithm is implemented for setting goals
and a passing a mission to our robot for the navigation inside of a warehouse in a

P.Ioakeimidis 21

Integration of ROS, Turtlebot, RPLIDAR, RFID technologies and algorithm implementation for navigation and RFID tag detection in a warehouse.

predefined route. Also several structures are implemented for the collection of the RFID
tags with the help of an another algorithm for RFID collection.

P.Ioakeimidis 22

Integration of ROS, Turtlebot, RPLIDAR, RFID technologies and algorithm implementation for navigation and RFID tag detection in a warehouse.

2. PROBLEM DESCRIPTION

Lets assume that we all agree that robots are important to us but the use of the robots
came at a cost. Many problems arise since robotic systems need configurations,
adjustment, development of the necessary algorithms, integration of sensors on top of the
robotic system, study of the surrounding environment, setting the right goal to the robot for
proper mission completion and much more.

In this master thesis we are looking for a solution to the problem of use of a robot in a
warehouse for detection of objects which lie on the shelves. This robot should have the
ability to navigate between the corridors of the warehouse and detect the objects that it
meets on the predefined path.

The first thing we are called to do is to choose an appropriate robotic system to rely on for
the implementation of this master thesis. The chosen robotic system has to be set up and
tunned properly to be fully functional. The robotic system and robot selected in this work
are ROS – Robotic Operating System and Turtlebot 2 robot which are presented in the
next chapters more precisely.

Lets suppose that we are in a warehouse and there are thousands of objects on the
shelves. This objects have to be tracked and recorded efficiently. Until this moment this
was done by humans but this could soon change, this task can be perform much faster
and efficiently by a robot. The usage of robots for this task create several major problems
which we are called to solve and will be described in the next paragraphs. The main
problem are robot navigation, mission/goal assignment, and object detection.

First major problem appears is the autonomous navigation of the robot and the the goal
assignment. This will provide the robot with the ability of moving though the warehouse
routes autonomously and without human interaction, after the goal assignment and until its
completion. A robot has to navigate in warehouse corridors and avoid collisions with
obstacles which could potential harm both the robot and the obstacles that appear on its
way. A technology has to be integrated on top of the robot for surrounding area mapping,
scanning and navigating. For the navigation in the warehouse Turtlebot 2 robot is used on
top of which RPLIDAR A2 was used.

Although robots can be programmed and operated easily from an experienced user who
has all the necessary knowledge about a specific robotic system, it is nearly impossible for
a non experienced user to program a robot without any previous knowledge and
experience. So it is important to introduce or locate a user friendly approach of providing
missions and goals to the robot even if the this user is coming from a complete different
scientific field. An algorithm has to be implemented for the mission/goal assignment
alongside with a technology like DSL - Domain Specific Language or more precisely EDL –
Experiment Descriptive Language could be used.

P.Ioakeimidis 23

Integration of ROS, Turtlebot, RPLIDAR, RFID technologies and algorithm implementation for navigation and RFID tag detection in a warehouse.

Another problem arose is the ability of the robot to scan and record the objected located on
the shelves of the warehouse. A technology has to be integrated on top of the robot and
provide the robot with the ability of object detection. Robot has to move in the predefined
path and scan for the objects located around. After the data collected it has to be stored
and forwarded and presented to the user. Luckily there are many technologies that can
help us accomplish this task one of them is a technology widely used and known called
RFID or Radio Frequency Identification.

In the next two chapters previous work is presented and the solutions proposed in this
master thesis to settle down the presented problem.

P.Ioakeimidis 24

Integration of ROS, Turtlebot, RPLIDAR, RFID technologies and algorithm implementation for navigation and RFID tag detection in a warehouse.

3. PREVIOUS WORK

In this chapter of the master thesis are presented previous works already done according
both the general subject of this work and the problems described in previous chapter.

3.1. Work 1: EDL

[1]“Kostas Kolomvatsos, Michael Tsiroukis, Stathes Hadjiefthymiades. 2017. An
Experiment Description Language for Supporting Mobile Iot Applications. National And
Kapodistrian University of Athens. Department of Informatics and Telecomunications”1

First is presented a work done by a team in National Kapodistrian University of Athens in
Computer Science Department. The Title of this work is “An Experiment Description
Language for Supporting Mobile Iot Applications”, by Kostas Kolomvatsos, Michael
Tsiroukis, Stathes Hadjiefthymiades. This work is presented because it concerns the issue
of remote experimentation with a Domain Specific Language called EDL – Experiment
Descriptive Language together with a developed platform for experimentation which gives
an easy and accessible approach for scientists from any scientific domain.

In this work authors cover the subject of management remote experimentation in the field
of mobile IoT for experimenters with or without the knowledge of the underlying
technologies. They present a collation of different innovative technologies they developed.
They call their proposal RAWFIE from the following words: Road-, Air- and Water-based
Future Internet Experimentation. The main things they present in this paper are the
experimentation Domain Specific language (DSL) they developed and called Experiment
Description Language (EDL), web editors they developed and other functionalities
available in their innovative creation.

RAWFIE platform offers remote experimentation functionalities to the researchers and
professionals. RAWFIE contains a framework for interconnecting numerous test-beds over
which remote experimentation on top of real devices will be realized. The devices
manufacturers and characteristics can be totally different from device to device.

Since experimenters(not experienced) have no knowledge about the characteristics of the
devices RAWFIE covers this gap by offering an abstraction of the underlying functionalities
by developing a Domain Specific Language (DSL) of their own. According the paper this
will offer the opportunity to non-experienced users to write more easily domain specific
programs not dependent on the underlying platform. Their DSL is called Experiment
Description Language (EDL) which can be edited in visual and textual editors with
assistance. Code generation component automatically create information transferred to
mobile nodes. RAWFIE efficiently interconnect experimenters coming from various
domains with the nodes present in numerous test-beds.

1 http://eprints.gla.ac.uk/163502/

P.Ioakeimidis 25

http://eprints.gla.ac.uk/163502/

Integration of ROS, Turtlebot, RPLIDAR, RFID technologies and algorithm implementation for navigation and RFID tag detection in a warehouse.

The problem authors are dealing with the lack of knowledge of experimenters for the low
level commands to handle the heterogeneity of the devices. Researchers who perform
testbed to handle and manage different devices they don’t have the knowledge to use all
these technologies and commands for the heterogeneous devices. To overcome this
problem they want to create an abstract way for defining commands for UVs that will give
the chance to experimenters of any field to handle the devices in their experiments. They
want to use DSLs which follow the principles of Model Driven Engineering (MDE)
development. RAWFIE offers EDL which provides a terminology for defining experiments
for mobile IoT.

The purpose of the RAWFIE initiative is to create a federation of different test-beds that will
be combined to make their resources available under a common framework. RAWFIE will
integrate numerous testbeds for experimenting in vehicular(road), aerial and maritime
environments. These UVs will be expose to the experimenters a vast test infrastructure.
The vision of Experimentation-as-a-Service (EaaS) is promoted though RAWFIE.

RAWFIE architecture consists of tree tier design patterns. Each tier is separated in
different software elements, each one providing a different functionality. i) the front-end tier
(includes : The RAWFIE Web portal, The Testbed and Resource Discovery, and The
Experimentation Suite which include five tools), ii)the middle tier(includes: the Experiment
Validator, the Experiment Controller, the Visualization Engine, the Testbed directory, the
Data Collection and Analysis module, the Launching Service, the Booking Service, and the
System Monitoring Service.) and iii)the data tier(insures the data persistence, stores
everything in Data Storage and Code Repositories and serves the Cloud).

The main component is RAWFIE EDL – Experiment Description Language. EDL is used to
create simple and complex experimental scenarios for the IoT domain. By providing high
level of abstraction it shields the experimenters from the complexities of the underlying
implementation of the RAWFIE platform and the available devices. EDL is simple and
similar to XML or legacy programming languages. It is built with Xtext framework. Main
parts of EDL are Metadata, Requirements, Declarations and Execution sections. ‘Typical’
commands originated in legacy programming languages are also included.

Another important components of RAWFIE is EDL Textual Editor and Visual Editor which
are synchronized and both are provided as Web application and support functionalities for
creation, update, compilation and validation of the experiments. Also editors provide rich
editing facilities and advanced content assistance with checking mechanism at syntax
time.

The EDL Visual Editor is created for creating experiments in the RAWFIE authoring tool
and it provides a user friendly environment that simplifies the creation of an experiment.
Both editors are synchronized but the error and warnings appear on the textual editor
area.

P.Ioakeimidis 26

Integration of ROS, Turtlebot, RPLIDAR, RFID technologies and algorithm implementation for navigation and RFID tag detection in a warehouse.

Next component is the EDL Validator and the Generator. Validator performs the syntactic
analysis on the provided EDL scripts on top of the proposed EDL model based on the EDL
grammar. Responsibilities of validator are: (i) syntactic and semantic validation, (ii)
application of semantic checking for nodes communication, spatio-temporal management,
sensing and data management. The code generation component generates files part of
which is uploaded in the Uvs.

The EDL grammar and the editors are created by adopting the Xtext framework. In Ecore
model produced the structure of EDL’s abstract syntax tree (AST) is described. The Xtext
framework offers a set of automatic validation functionalities. Parser to the first validation
step and the linker heck for broken cross-references between EDL concepts. Also other
validation custom tools are available which are written in Xtend language. This custom
validation is for additional constraints for the defined experiments. TH Xtend language is
also adopted for the creation of the EDL generator. When it come to the editors the
backend Xtent functionalities are invoked with HTTP requests to the server-side
component. The text content is either loaded from the Xtext server or provided though
Javascript. The Web integration of Xtext supports two operation modes: (i) stateful mode
and (ii) stateless mode. The client side of both editors is built with Javascript and the map
of the client side is OpenLayers.

Important part of the paper is the demonstration of case study where the authors show how
RAWFIE platform could be used. They show all the parts presented in the paper in practice. And by
presenting the platform with pictures they explain all the different parts of RAWFIE.

3.2. Work 2: E-Pres

[2]“Michail Chatzidakis, Michail Loukeris, Kostis Gerakos, Stathes Hadjiefthymiades. 2016.
E-Pres: Monitoring and Evaluation of Natural Hazard Preparedness At School Community.
Pervasive Computing Research Group. National And Kapodistrian University of Athens.
Department of Informatics and Telecomunications”2

Next is presented a work which is also very important and could give a lot of potential
knowledge to this master thesis which is called “E-Pres: Monitoring and Evaluation of
Natural Hazard Preparedness At School Community”, by Michail Chatzidakis, Michail
Loukeris, Kostis Gerakos, Stathes Hadjiefthymiades. This work was done by the Pervasive
Computing Research Group at Department of Informatics and Telecommunications of
National and Kapodistrian University of Athens. One of the main parts of this work is a
system implemented with RFID Antennas and Tags for performing evacuation drills at
school community.

Authors in this paper present a unique project which implements a system for performing
evacuation drills their main target is school community. They use sensor network, and they
implement a front and back-end systems. They obtain live stream of the evacuation

2 https://ieeexplore.ieee.org/document/7857218/authors

P.Ioakeimidis 27

https://ieeexplore.ieee.org/document/7857218/authors

Integration of ROS, Turtlebot, RPLIDAR, RFID technologies and algorithm implementation for navigation and RFID tag detection in a warehouse.

procedure and they store in database and make prepossessing of the data with relevant
statistical tools. The main component their system is bases is RFIDS and RF antennas.
Authors describe their system as innovative, robust, secure, real-time, salable, and fault-
tolerant through the paper.

The main purpose of the E-PreS project is to prevent the natural hazards, the main goal is
to design and evaluate the drills and exercises performed to help the staff and students to
be prepared to react appropriately. E-PreS can be used inn any situation where location
analytics is needed, to highlight congested junction points and perform bottleneck
detection.

In the paper they present several other works done in the field of natural hazards. E-PreS
fills the gap by providing a trustworthy means to evaluate any evacuation drill and thus any
evacuation scenario focusing on earthquake, food, volcanic eruption and also focusing to
schools.

Authors have developed a methodology for the real-time evaluation of prevention
measures involving different categories of actors, districts, steps and metrics. To the drills
or training new steps or individuals could be added if there are available spatial and sensor
information.

The E-PreS system consists of a number of checkpoints on each of them RFID antennas
are set up for monitoring connected to RFID readers connected to a board computer. Each
person of the drill has an RFID tag on their shoes for better signal. Data is transferred
though WIFI from board computers to back-end server which runs web services and
databases. Through this web services user can perform different types of functionalities
(Building insertion, Upload floor blueprints, Define acceptable evacuation metrics, Fill
questionnaires).

The architecture of E-PreS is consisted of the following five parts : Sensor network, Data
stream components, Data processing components, Service components, and Web
application components.

Sensor network is the backbone of E-PreS system. Sensors gather information and
transmit it though the internal network of the mobile server for processing. They want the
sensors to follow the following guidelines: to be uniquely identifiable, available to the server
on demand, and readings and messages to be stored and retrieved. To create this
capabilities they use embedded systems of sensors with software implemented by the
authors to exploit the capabilities aforementioned. Sensor network is consisted of
1)Reader interface: which is responsible for data collection and transmission) and
2)Sensor Message Queue: which is each sensor’s internal message queue which acts as
unique message storage. Responsibilities of sensor message queue are: Maintaining the
messages, Keeping the data safe, and Enabling fast and reliable message delivery.

P.Ioakeimidis 28

Integration of ROS, Turtlebot, RPLIDAR, RFID technologies and algorithm implementation for navigation and RFID tag detection in a warehouse.

Data stream components is the group between the level of sensors and data processing
components. These components are responsible for handling the data flow between the to
levels by distributing data in parallel with assurance for no data to be lost. Data stream
components group is consisted of 1)Server Message Queue – It is implemented on the
server and receives data from sensor units Message Queues (Receives, Maintains the
messages, and Keep safe the data), and 2)Message Broker – It is the software component
that handles the message queue and delivers a feed of messages to different types of
receivers (Handling the messages, Maintaining feed, Providing interfaces, Delivering the
messages). The Message Broker is in charge of transmitting the stream of data to other
layers.

Service components provide functionality for the web application component. Their
responsibilities are data analysis, registration services etc. They run in web applications.
1)Real Time Service: provides data analysis to the web application controller. 2)Data
Analysis Service: Data analysis on off-line data. 3)Registration Service: It’s responsibility is
the registration of procedures. 4)Security layer: Security functionality to any component in
the system.

Web Application components: provides interaction to the user with the E-PreS system
though the web application. It is consisted of the following three components: Drill
Registration/Modification, Drill Review, Real Time Monitoring.

Data Processing components processes the data produced bu the sensor component,
run analytical tests and present the results to the service components. It follows a modified
lambda architecture(scalability, and fault-tolerance). Lambda architecture defines three
layers: A)Batch layer: stores the data to a database for persistence and consistency, it can
handle and store efficiently massive amounts of data, B)Serving layer: It is important for
loading the batch views, and automatically updates the outdated views, C)Speed layer: It is
processing the data received and creates views and stores them in specialized memory
module for compensating the latency of the Batch layer – It is a real time storage and
analytical component. Speed layer utilities storm server and bolt architecture to achieve
real-time views of the ongoing drill.

3.3. Work 3: Robotic Navigation

[3]“Kshitija Deshmukh, Ashitha Ann Santhosh, Yogesh Mane, Saurabh Verma, Sdhana
Pai. Nov 2015. Robotic navigation and inventory management in warehouses.
International Journal of Soft Computing and Artificial Intelligence. ISSN. 3(2): 75-79”3

In this paper they discuss the introduction of robots for navigating and moving cartons
around the warehouse and an approach for automated inventory management procedure.
They propose an automated system composed of a robot, RFID technology and other
parts for replacing humans. They present briefly several already introduced approaches
3 http://www.iraj.in/journal/journal_file/journal_pdf/4-204-145127922775-79.pdf

P.Ioakeimidis 29

http://www.iraj.in/journal/journal_file/journal_pdf/4-204-145127922775-79.pdf

Integration of ROS, Turtlebot, RPLIDAR, RFID technologies and algorithm implementation for navigation and RFID tag detection in a warehouse.

like Amazon's and Swisslog warehouse robots. In their approach they use a robot which
will navigate in a warehouse by using a line follower technique with IR sensor. For the
identification and the inventory management they choose passive RFID tags with reader
alongside with an Arduino controller and a wireless module. Finally the loading and the
unloading should be performed with combination servo motors or a forklift. Finally they
mention a central unit for the control of the overall system.

The system presented in this paper looks very attractive but it has several flows like luck of
experiments. It is not completely obvious how several parts of their proposed system
function. Also there is not enough comparison or reference of similar technologies that
could solve the same technological challenges. Finally the distance of RFID reader is to
short only 6 cm. The overall idea of this paper is very interesting and useful.

3.4. Work 4 Navigation Tuning

[4]“Kaiyu Zheng. Sep 2016, ROS Navigation Tuning Guide"4

In this work are described the main parts of the ROS navigation stack, this work can be
used as a reference and it guides the user to perform tuning navigation parameters of
ROS. Most importan navigation stack parameters are presented and discussed in this
work. At the end of this work the main problems of the navigation stack are presented.

3.5. Work 5: RFID Technology

With a fast Google search for keywords “RFID usage in warehouses papers” someone can
find tons of papers describing RFID Technology being used in warehouses. This proofs
that there are many proposed solutions for RFID technology to be applied in warehouses.
RFID technology is applied in warehouses to improve the logistics part. This works were
not studied in the context of this thesis but are mentioned as a proof that RFID technology
is studied for future use in warehouses. Mostly these works and papers are presenting
RFID as a technology for bringing optimization to the warehouse logistics chain through
tracking, identifying, and detecting objects, such works are: (a)Wamba and
Chatfield(2010)5, (b)Hassan et al.(2012)6, (c)Rodrigues(2009)7, (d)Pacciarelli et al.(2011)8,

4 http://kaiyuzheng.me/documents/papers/ros_navguide.pdf

5 https://ro.uow.edu.au/infopapers/1827/

6 https://ieeexplore.ieee.org/document/6468853/

7 https://www.semanticscholar.org/paper/1-of-10-INTEGRATION-OF-RFID-TECHNOLOGY-IN-A-CHAIN-
Rodrigues/9882462c9beaf14f50f41ec3f5e6e84dcbc0a9f1

8 https://link.springer.com/article/10.1007/s11066-011-9059-4

P.Ioakeimidis 30

https://link.springer.com/article/10.1007/s11066-011-9059-4
https://www.semanticscholar.org/paper/1-of-10-INTEGRATION-OF-RFID-TECHNOLOGY-IN-A-CHAIN-Rodrigues/9882462c9beaf14f50f41ec3f5e6e84dcbc0a9f1
https://www.semanticscholar.org/paper/1-of-10-INTEGRATION-OF-RFID-TECHNOLOGY-IN-A-CHAIN-Rodrigues/9882462c9beaf14f50f41ec3f5e6e84dcbc0a9f1
https://ieeexplore.ieee.org/document/6468853/
https://ro.uow.edu.au/infopapers/1827/
http://kaiyuzheng.me/documents/papers/ros_navguide.pdf

Integration of ROS, Turtlebot, RPLIDAR, RFID technologies and algorithm implementation for navigation and RFID tag detection in a warehouse.

(e)Yan et al.(2008)9, and (f)Wang et al.(2015)10. In contrast to this papers we present RFID
technology in combination with several other technologies in a more practical form. Others
present RFID technology for indoor location sensing which is a completely different
approach not being investigated in this work.

9 https://ieeexplore.ieee.org/document/4609858/authors

10 http://www.ijmmm.org/index.php?m=content&c=index&a=show&catid=40&id=258

P.Ioakeimidis 31

http://www.ijmmm.org/index.php?m=content&c=index&a=show&catid=40&id=258
https://ieeexplore.ieee.org/document/4609858/authors

Integration of ROS, Turtlebot, RPLIDAR, RFID technologies and algorithm implementation for navigation and RFID tag detection in a warehouse.

4. PROPOSED SOLUTION

The main choice performed in this thesis is the selection of the robot for the
implementation of this work. The robot chosen for this master thesis was an accessible
robot called Turtlebot. Turtlebot is an open-source affordable low cost personal robot for
experimentation and implementation of different applications. Turtlebot is a kit that provides
all the basic necessary parts to start a robotic project. Turtlebot is a kit that includes a
mobile base, a 3D Kinect Sensor and a netbook alongside with the Turtlebot hardware
mounting kit and ROS SDK accessible publicly on-line. Turtlebot gives the opportunity to
mount hardware and sensors on top of it. Specifically Turtlebot model 2 was chosen for the
implementation of this master thesis. Turtlebot is a good choice not only because it is open
source an low-cost but also because it contains Turtlebot SDK and it it runs ROS – Robotic
Operating System, which gives a lot of functionalities and capabilities to the robot directly
out of the box similar to larger robotics platforms. The main functionality we are interested
in this master thesis is navigating in interior and mounting extra hardware on top of the
robot. In the next chapters Turtlebot is explained and presented more precisely.

For the navigation, mapping, obstacle avoidance and RPLIDAR model A2 is being used.
RPLIDAR is a 360 degree laser scanner and it is intended for both indoor and outdoor
application. Its characteristics are much superior than Kinect for indoor navigation this is
the reason why a choice was made to use it as a replacement to Turtlebot default Kinect
3D laser. RPLIDAR can be physically mounted on top of Turtlebot and scan 360 degrees
the surrounding area. The fact that RPLIDAR spins 360 degrees(with all the other superior
technical characterists) compared to the small scanning angle of Kinect which scans only
the area in front of the our robots is another reason RPLIDAR preferred as a mapping and
navigation sensor. Finally LIDARs is the solution chosen and mounted on top of the
autonomous vehicles and self driving cars for moving autonomously and avoiding
obstacles.

For the scanning and detection of the objects on the shelves RFID – Radio-frequency
Identification technology is chosen which uses electromagnetic fields. Specifically by
saying RFID technology we mean RFID Antennas, passive RFID tags, RFID reader and
an algorithm running in the background tuning the proper functionality of the hardware. The
RFID reader used is an MTI RU 861-010 reader/module with USB connectivity. By
mounting RFID tags on top of each object in warehouse it is possible to locate, track and
identify them with the help of RFID antennas and RFID reader both mounted on top of
Turtlebot and scanning the area around TurtleBot for RFID tags. The RFID tag technology
is preferred to other possible technologies solutions like Barcodes, because in contrast to
barcodes, RFID tags don't need to be within the direct sight of the RFID antennas/reader
and as positive result can be traced from longer distance. There are also other
technologies that could be possible solutions like NFC(RFID like for small distances),

P.Ioakeimidis 32

Integration of ROS, Turtlebot, RPLIDAR, RFID technologies and algorithm implementation for navigation and RFID tag detection in a warehouse.

barcode technology, and bluetooth technology for detecting good on the shelves of a
warehouse although there are not so

For creating the mission/goal for the Turtlebot to accomplish though the algorithm running
on top of Turtlebot EDL – Experiment Descriptive Language is used. This approach was
selected because the external user has just to select the points where the Turtlebot should
move towards to complete the goal set no further knowledge about internals of ROS –
Robotic Operating System or Turtlebot is required.

Furthermore the data collected from the RFID tags is saved both in a structure and a file
locally, it is printed as logs and finally published on a topic though a distributed streaming
platform called Apache Kafka. As described in the documentation on the official website
Apache Kafka has the capabilities of publishing and subscribing to streams of records, it is
fault-tolerant durable solution to store streams of records and because it gives as the
ability to precess the streams of records that are appearing. With the help of Kafka our
data can be reliably transferred between systems and applications and in real-time
transform or react on the data that is coming in streams in our case from RFID
antennas/reader. Finally a hashing structure is used for filtering the RFID tags data
collected. This structure helps us keep only the tags that had the highest signal to each
position our robot passed eliminating duplicate tags with lower signal quality.

Last but not least one of the most important parts of this work is the implemented algorithm
that proposes the solution for our Turtlebot robot navigation by setting goals. The
implemented algorithm get benefited from the ROS and specifically navigation move_base
package that is provided by ROS for setting goals to our Turtlebot robot. For the
development software in ROS Python, C++ and ROS API are available. For the
development of the specific algorithm Python was used but it was partially not fully
implemented in C++ to check the outcome of the result comparing to the Python
implementation. Generally a lot of ROS packages are written in C++ but in the context of
this master thesis Python was chosen.

P.Ioakeimidis 33

Integration of ROS, Turtlebot, RPLIDAR, RFID technologies and algorithm implementation for navigation and RFID tag detection in a warehouse.

P.Ioakeimidis 34

Figure 6: Representation of the Turtlebot with RFID
technology, Lidar, and Laptop running ROS.

Integration of ROS, Turtlebot, RPLIDAR, RFID technologies and algorithm implementation for navigation and RFID tag detection in a warehouse.

5. CONCEPTS AND TECHNOLOGIES DESCRIPTION

5.1. Robotics

Term robotics derives from the word robot and stands for a scientific field which study the
machines that have the ability to perform different tasks, like replicating human behavior in
a more efficient, faster and affordable way or performing task that human never could
achieve before. Robotics solve issues concerning all aspects of robots industry several of
them are the design, the building, the operation, the control and the use of robots. The
technological and the scientific advancements contribute to the field of robotics and robots
are introduced to even more sectors of our society. Generally speaking robots doesn't have
a specific appearance defining them, but their design choices are adapted according to the
requirements of the task they are meant to perform. On the other hand there are robots
that are designed to replicate the exact appearance and behavior of humans.

The idea of robotic systems is not something new but it is coming from many centuries ago
humans always had a desire to create and engineer automatic machine performing tasks.
First references exist about automatic system in the Lie Zi text in Third century B.C. More
than hundred machines where described in Pneumatica and Automata by Heron of
Alexandria in First century A.D. and earlier. Today Robotic Systems exist everywhere
space exploration, in medicine, in agriculture, in industries and factories, in different
research areas, in rescue and much more.

P.Ioakeimidis 35

Figure 7: Autonomous vehicle in space, source:
https://pixabay.com/en/mars-mars-rover-space-

travel-robot-67522/

https://pixabay.com/en/mars-mars-rover-space-travel-robot-67522/
https://pixabay.com/en/mars-mars-rover-space-travel-robot-67522/

Integration of ROS, Turtlebot, RPLIDAR, RFID technologies and algorithm implementation for navigation and RFID tag detection in a warehouse.

 5.1.1 Robots1112

First reports about creation similar to robots appear in ancient Greek mythology. Several
such mythical creation are discussed in literature like the Talos giant automaton self
operating machine made of bronze. Talos was Hephaestus creation and was given to king
of Crete Minos, its task to protect Europa at the island of Crete by destroying the foreign
invaders and moving around the island three times per day.

Generally speaking a robot can be defined as a programmable mechanical device by a
computer that can substitute a human being by performing a series of actions
automatically. Robots are machines that are programmed in a such way that they can
perform different complex task automatically with an internal control device or under the
human guidance.

5.2. Robotic Frameworks

There are many ways and approaches for programming robots out there. In this chapter
are briefly presented several approaches about robotic frameworks and generally
programming robots. The most well known and accepted is Robot Operating System
ROS which is the choice used in this work. It was chosen for this work because ROS is

11 More about Robots: https://en.wikipedia.org/wiki/Robotics

12 More about Robots: https://en.wikipedia.org/wiki/Robot

P.Ioakeimidis 36

Figure 8: ASIMO robot, source:
https://en.wikipedia.org/wiki/File:HOND

A_ASIMO.jpg

https://en.wikipedia.org/wiki/File:HONDA_ASIMO.jpg
https://en.wikipedia.org/wiki/File:HONDA_ASIMO.jpg
https://en.wikipedia.org/wiki/Robot
https://en.wikipedia.org/wiki/Robotics

Integration of ROS, Turtlebot, RPLIDAR, RFID technologies and algorithm implementation for navigation and RFID tag detection in a warehouse.

free, ROS runs on top of Turtlebot, it is open source, there are many examples of real
robots out there running ROS, it contains all the necessary libraries and tools for robotics
development, it contains all the necessary packages already implemented waiting for being
used, ROS has an distributed internal approach of software that makes it more stable and
hard to fail, any component can be integrated easily into ROS due to it messaging system,
sensors can be mounted on top of ROS robots, it is modular. The fact that ROS is open
source that makes it accessible, and maintained by many people, this accessibility gives to
ROS all the positive feedback it can receive from the accumulated community knowledge.
Main source where you can find information about ROS is the official ROS website 13 and
the paper presenting ROS 14.

However, ROS is not the only system out there, for many years numerous systems,
libraries and frameworks were built and used for programming robots. In the next chapters
some other frameworks are presented briefly, the aim of this chapter is just to enumerate
several other frameworks and not analyze each one of them. The main frameworks similar
to ROS15:

1. Player(http://playerstage.sourceforge.net/), Player Project is a Free Software tools
for robot and sensor applications. It purpose is to create Free Software for research
in robot and sensor systems. Player robot server is wildly used. The simulators used
in ROS like Stage and Gazebo are part of Player Project.

2. YARP(http://www.yarp.it/): YARP stands for Yet Another Robot Platform. YARP is
free and open, licensed as LGPL. YARP is ment for building a control system for a
robot, organized as a collection of programs communicating in a p2p way alongside
with a extensible group of connection types.

3. Orocos(http://www.orocos.org/): Orocos stands for Open Robot Control System.
Orocos is free and open, licensed as LGPL. It started as an idea for a Free Software
project for robot control in December 2000.

4. Carmen(http://carmen.sourceforge.net/): Carmen stands for Carnegie Mellon Robot
Navigation Toolkit. It is an open-source collection of software meant for the control
of mobile robot. It is modular and it provides all the necessary tools for basic
navigation.

5. Orca(http://orca-robotics.sourceforge.net/orca_doc_overview.html): Orca is a
project with software reusability in mind to create progress in the fields of robotic
research and industry. It is licensed as LGPL and GPL.

13 http://www.ros.org/

14 http://www.willowgarage.com/sites/default/files/icraoss09-ROS.pdf

15 http://wiki.ros.org/ROS/Introduction

P.Ioakeimidis 37

http://orca-robotics.sourceforge.net/orca_doc_overview.html
http://carmen.sourceforge.net/
http://www.orocos.org/
http://www.yarp.it/
http://playerstage.sourceforge.net/
http://wiki.ros.org/ROS/Introduction
http://www.willowgarage.com/sites/default/files/icraoss09-ROS.pdf
http://www.ros.org/

Integration of ROS, Turtlebot, RPLIDAR, RFID technologies and algorithm implementation for navigation and RFID tag detection in a warehouse.

6. MOOS(http://www.robots.ox.ac.uk/~mobile/MOOS/wiki/pmwiki.php/Main/HomePage
): MOOS is a Cross Platform Software for Robotics Reasearch.

7. Microsoft Robotics Studio (https://www.microsoft.com/en-
us/download/details.aspx?id=29081): Microsoft Robotics Studio is Windows-based
and .NET-based programming environment freely available for robot control and
simulation.. It is intended for building robotics application by both professionals,
non-professionals as well as hobbyists.

Tekkotsu16 is a robotics framework thats name means 'iron bones in Japanese'. The way
Tekkotsu is organized it gives you the chance to program in higher levels. It is written in C+
+ and it provides an API for development. Tekkotsu provides several services out of the
box for helping you get started like visual processing, localization, kinematics solvers,
remote monitoring and teleoperation tools etc. Finally Tekkotsu is open source and free
software that also is built on top of other third party libraries and packages. There are
several papers about Tekkotsu 17 and 18.

OpenRDK modular framework is another robotic framework which is open-source as well,
on the official sources it is presented as a modular software for rapid development of
distribute mobile robotic systems. It is important to mention that OpenRD is written in C++
and it runs on Unix based systems. More information about this framework could be found
on the official website of openRDK here 19. Finally OpenRDK can be tracked back to 2008
and more information about OpenRDK and OpenRDK was described in the following paper
20 and in this paper 21 they present several other robotic frameworks that existed until that
moment compared to OpenRDK. Robotic frameworks listed in OpenRDK paper are
OROCOS, Orca, CARMEN, OpenRTM-aist, Microsoft Robotics Studio, Player, MOOS,
CLARAty, MARIE, MOAST, MIRO, SPQR-RDK.

Last but not least a paper presenting robotic architecture frameworks is 22 they present
several robotic frameworks, perform a case study. They speak about different types of
frameworks and standards. Several are open source frameworks like ROS – Robotic

16 http://tekkotsu.org/about.html

17 https://ieeexplore.ieee.org/abstract/document/5980533/

18 https://www.ri.cmu.edu/pub_files/pub4/tira_thompson_ethan_2004_1/tira_thompson_ethan_2004_1.pdf

19 http://openrdk.sourceforge.net/

20 https://pdfs.semanticscholar.org/e981/25fdb4947f4ccce67fc61ee363cb61745809.pdf

21 https://www.dis.uniroma1.it/~iocchi/publications/iocchi-iros08.pdf

22 https://www.diva-portal.org/smash/get/diva2:623989/FULLTEXT01.pdf

P.Ioakeimidis 38

https://www.diva-portal.org/smash/get/diva2:623989/FULLTEXT01.pdf
https://www.dis.uniroma1.it/~iocchi/publications/iocchi-iros08.pdf
https://pdfs.semanticscholar.org/e981/25fdb4947f4ccce67fc61ee363cb61745809.pdf
http://openrdk.sourceforge.net/
https://www.ri.cmu.edu/pub_files/pub4/tira_thompson_ethan_2004_1/tira_thompson_ethan_2004_1.pdf
https://ieeexplore.ieee.org/abstract/document/5980533/
http://tekkotsu.org/about.html
https://www.microsoft.com/en-us/download/details.aspx?id=29081
https://www.microsoft.com/en-us/download/details.aspx?id=29081
http://www.robots.ox.ac.uk/~mobile/MOOS/wiki/pmwiki.php/Main/HomePage
http://www.robots.ox.ac.uk/~mobile/MOOS/wiki/pmwiki.php/Main/HomePage

Integration of ROS, Turtlebot, RPLIDAR, RFID technologies and algorithm implementation for navigation and RFID tag detection in a warehouse.

Operating System and OROCOS mostly written in C++ and run on Windows and Linux OS
and some commercial frameworks like MRDS – Microsoft Robotics Development Studio.
On the other hand they speak about frameworks which combine Ada, VHDL and FPGA.
They also present a standard framework called Jaus Joint Architecture for Unmanned
Systems, Open Jaus SDK and MDE – Model Driven Engineering.

ROS is the most convenient solution among all described systems because it is the only
one that combines all the necessary tools, packages and solutions for robotics software
development and at the same time it is open source and accepted and supported by the
robotics community.

5.3. Warehouses
23 The system studied in this work is meant mostly for warehouse use it could be useful
describing the warehouse term. Warehouse is a place (a building) mostly used for
commercial purposes where goods are stored. From the ancient times people used
different storage technics for storing goods meant for protecting the goods from the natural
environment. Early examples of such warehouses were existed from earlier civilization in
form of storage pits for protecting seeds and surplus food. During the period of Roman
empire existed building called horrea which were public warehouses used during ancient
Rome. Later medieval merchants across Europe used to keep goods in household
storerooms on ground or underground level. More warehouses existed in Venice and UK.
Nowadays warehouses still exist for different types of goods. Warehouses today are
modernized and have created a whole system which is meant for effective, secure,
convenient storage of goods. A big part of todays economy is affected from how goods are
stored and moved from place to place. Also different innovations are introduced to modern
warehouses thanks to technological progress like a forkit truck, pallet racks and
autonomous robotic systems.

5.4. Robots in Warehouses

Nowadays most of the tasks and operations performed in warehouses are done mostly by
humans. Although with the technological progress this obsolete habit is going to change.
Already several warehouses introduce revolutionary technologies which introduce faster,
easier, safer, more secure and precise execution of operations previously performed by
humans. Tasks like loading and unloading goods, moving objects around the warehouse,
performing inventory tasks all can be handled by autonomous robotic systems.

In this master thesis we focus on the exploitation of a robots and specifically a robot called
Turtlebot in a warehouse environment, its main task is to navigate in a warehouse and
perform inventory process. Turtlebot navigates around the warehouse and detect objects
placed on the shelves of the warehouse by scanning RFID tags mounted on each object,

23 https://en.wikipedia.org/wiki/Warehouse

P.Ioakeimidis 39

https://en.wikipedia.org/wiki/Warehouse

Integration of ROS, Turtlebot, RPLIDAR, RFID technologies and algorithm implementation for navigation and RFID tag detection in a warehouse.

today this work is done by humans in most warehouses.

As described previously there are several companies introducing robots to the modern era
warehouses with pretty promising results for the future of this industry.

24A great example is Amazon's, they introduced a huge fleet of robots to their distribution
centers, the main task of these robots is to move 24 hours per day a great amount of
goods around the warehouse. Amazon robots move whole block of shelves to a person
who's task is to pick the product and put it into the cart. This procedure eliminates the need
of a person to perform all this steps of searching for the product, scanning, picking and
then putting this product into the cart.

25 26Alibaba is another company that introduced robots through their smart warehouse
robots that perform approximately 70 percent of the work by carrying goods that weigh
more than hundred kilograms.

27Also Alibaba is performing test on a robot purposed for delivery with a revolutionary
technology of pair of eyes.

28Furthermore Ocado a United Kingdom online grocer they use automatic arm to store and
retrieve products. These are only few companies known for using robots in their
warehouses, out there many other companies exit that create design and use robots inside
of their warehouses.

29Last but not least Swisslog is a company that designs, develops and delivers automation
solutions in domains like health, warehouses and distribution centers. Swisslog together
with KUKA have introduced CarryPick, which is an automated storage and order fulfillment
system. CarryPick is a storage and picking system which exploit mobile vehicles
(KMP600). This robots navigate though a grid to deliver racks with boxes to workstations
for picking. This approach reduces the path workers had normally to traverse.

24 https://en.wikipedia.org/wiki/Amazon_Robotics

25 https://www.youtube.com/watch?v=FBl4Y55V2Z4

26 http://uk.businessinsider.com/inside-alibaba-smart-warehouse-robots-70-per-cent-work-technology-
logistics-2017-9

27 https://www.technologyreview.com/the-download/611286/alibaba-is-testing-a-delivery- robot-with-a-
revolutionary-pair-of-eyes/

28 https://www.youtube.com/watch?v=V5TegyxJY3I & https://www.youtube.com/watch?v=XO7fvrdTCgs

29 https://www.swisslog.com/en-us/warehouse-logistics-distribution-center-automation/products-systems-
solutions/asrs-automated-storage-,-a-,-retrieval-systems/boxes-cartons-small-parts-items/carrypick-storage-
and-picking-system

P.Ioakeimidis 40

https://www.swisslog.com/en-us/warehouse-logistics-distribution-center-automation/products-systems-solutions/asrs-automated-storage-,-a-,-retrieval-systems/boxes-cartons-small-parts-items/carrypick-storage-and-picking-system
https://www.swisslog.com/en-us/warehouse-logistics-distribution-center-automation/products-systems-solutions/asrs-automated-storage-,-a-,-retrieval-systems/boxes-cartons-small-parts-items/carrypick-storage-and-picking-system
https://www.swisslog.com/en-us/warehouse-logistics-distribution-center-automation/products-systems-solutions/asrs-automated-storage-,-a-,-retrieval-systems/boxes-cartons-small-parts-items/carrypick-storage-and-picking-system
https://www.youtube.com/watch?v=XO7fvrdTCgs
https://www.youtube.com/watch?v=V5TegyxJY3I
https://www.technologyreview.com/the-download/611286/alibaba-is-testing-a-delivery-robot-with-a-revolutionary-pair-of-eyes/
https://www.technologyreview.com/the-download/611286/alibaba-is-testing-a-delivery-robot-with-a-revolutionary-pair-of-eyes/
https://www.technologyreview.com/the-download/611286/alibaba-is-testing-a-delivery-robot-with-a-revolutionary-pair-of-eyes/
http://uk.businessinsider.com/inside-alibaba-smart-warehouse-robots-70-per-cent-work-technology-logistics-2017-9
http://uk.businessinsider.com/inside-alibaba-smart-warehouse-robots-70-per-cent-work-technology-logistics-2017-9
https://www.youtube.com/watch?v=FBl4Y55V2Z4
https://en.wikipedia.org/wiki/Amazon_Robotics

Integration of ROS, Turtlebot, RPLIDAR, RFID technologies and algorithm implementation for navigation and RFID tag detection in a warehouse.

Generally as it is obvious the main target is to reduce the involvement of humans and
introduction of autonomous systems. These technologies eventually will totally integrate in
warehouse sector because in contrast with humans they never get tired, they remain
operation through the whole day, they minimize the number of mistakes, they have higher
productivity and they are more secure. Also multiple tasks that were to dangerous and
harmful for humans for example like handling toxic materials now can be handle with zero
harm by machines. As technology evolves year by year the warehouses will become even
more automated. These changes will transform totally how warehouses and logistics are
organized and managed today.

5.5. Sensors

30In Wikipedia a sensor is defined as “A sensor is a device, module, or subsystem whose
purpose is to detect events or changes in its environment and send the information to
other electronics, frequently a computer processor. A sensor is always used with other
electronics, whether as simple as a light or as complex as a computer.”

Generally speaking a sensor has an input, which it detects data from the environment and
an output which redirects the data collected to the next device. This collected data can be
modified, processed, studied and used for making a decision from the recipient.

There are thousands of sensors and each is able to collect a specific type of environmental
changes or events. There are sensor that measure temperature, light, speed, acceleration,
etc... This ability of sensors to get environmental information and provide it to other devices
make them useful for multiple applications in medicine, aerospace, agriculture,
manufacturing, hazard detection, entertainment, robotics, etc.

Sensors are really important for the robotics field. By collecting the data from the
environment, sensors make the robot able to perceive the surrounding world and perform
tasks autonomously, make decisions and generally perform work.

30 https://en.wikipedia.org/wiki/Sensor

P.Ioakeimidis 41

Illustration 9: Swisslog Robot, source:
https://www.youtube.com/watch?v=Z-n942tutXY

https://en.wikipedia.org/wiki/Computer_processor
https://en.wikipedia.org/wiki/Sensor
https://www.youtube.com/watch?v=Z-n942tutXY

Integration of ROS, Turtlebot, RPLIDAR, RFID technologies and algorithm implementation for navigation and RFID tag detection in a warehouse.

In this work several sensors are being used for the implementation of the project. The first
sensor is measuring a distance of surfaces from with the help of light laser, LIDAR – Light
Detection and Ranging, it used for scanning of the surrounding environment, map creation
and navigation by the Turtlebot robot, the second sensor which is composed of two RFID
antennas are scanning for RFID tags by producing radio frequency waves. Turtlebot hosts
more sensors already embedded in it like the sensors for the cliff detection on the left,
center and right sides, wheel drop sensor on the left and right side and 3d sensor for
navigation.

5.6. ROS – Robotic Operating System

[5]ROS stands for Robotic Operating System31 but its name could be misleading because
ROS isn't really an operating system it is a framework that provides everything needed for
robotics development, and thats why ROS needs a real operating system Linux Ubuntu.
ROS is an open-source, meta-operating system that provides a collection of all necessary
tools, packages, and services, needed for robotics project implementation. The main
standard operating system services provided by ROS are: a) hardware abstraction, b)low-
level device control, c)implementation of commonly-used functionality, d) message passing
between processes, and finally e) package management.

One of ROS main characteristic is its adaptability, it is accepted and widely used today by
researchers and companies. The fact that ROS is free and open source makes it even
more attractive. It is accessible for performing experiments for students, amateur, and
professionals software developers. Robots running ROS are affordable like Turtlebot, easy
to assemble and operate directly out of the box. It is even possible to create and work with
ROS robots in a simulated world, with tools like Gazebo and RVIZ coming with ROS
installation avoiding the purchasing of a real robot. ROS accommodates a collection of
tools, libraries and conventions making really simple the procedure of creation of
complicated and robust robot behavior.

Development of ROS started back in 2007 by the Standford Artificial Intelligence

31 http://www.ros.org/

P.Ioakeimidis 42

Figure 10: Sensors, source:
http://www.efxkits.com/blog/various-types-of-

sensors-applications/

http://www.ros.org/
http://www.efxkits.com/blog/various-types-of-sensors-applications/
http://www.efxkits.com/blog/various-types-of-sensors-applications/

Integration of ROS, Turtlebot, RPLIDAR, RFID technologies and algorithm implementation for navigation and RFID tag detection in a warehouse.

Laboratory (SAIL) to provide support to Stanford AI Robot project. Since 2008 Willow
Garage took over and continued ROS development. Finally Open Source Robotics
Foundation (OSRF) looks after the maintenance of ROS as well as the project connected
to ROS like Gazebo, etc.

ROS makes the development of multiple components of any robotic system accessible and
easy. Developers has the chance to share the implemented code and benefit from the
large accumulated knowledge from the previous works. The modularity of ROS makes it
possible for different parties collaboration for implementation of robotic project by
combining their works. Finally already implemented components build up a strong
foundation for someone to use in his work.

The main core components provided by ROS are a) Communications infrastructure
(message passing, recording and playback of messages, remote procedure calls,
distributed parameter system), b) Robot specific features (standard robot messages, root
geometry library, robot description language, preemtable remote procedure calls,
diagnostics, pose estimation, localization and navigation), and c) Tools (command line
tools – rviz – rqt).

Online you can find many ROS powered robots 32

The official source of unlimited ROS information is the official website 33 contained
unlimited resources like wiki pages - documentation, questions and answers, blog and
forums.

 5.6.1 Why ROS

Several reasons why ROS is used and accepted by the community and more importantly
why it is chosen as a tool in this master thesis:

• Turtlebot the robot used in this work runs ROS,

• ROS is free and open source,

• All necessary tools, libraries, and packages are provided by ROS,

• Reusability of already implemented code, take away the need for reinventing the

wheel,

• Continuously growing community with great amount of accumulated knowledge,

◦ Researchers, developers, students share their work building a big heritage of

work,

32 https://robots.ros.org/

33 http://www.ros.org/

P.Ioakeimidis 43

http://www.ros.org/
https://robots.ros.org/

Integration of ROS, Turtlebot, RPLIDAR, RFID technologies and algorithm implementation for navigation and RFID tag detection in a warehouse.

• Distributed approach makes ROS stable and hard to fail.

• ROS can be distributed across multiple machines thanks to its peer-to-peer network

of processes

• ROS follows a modular approach,

• Components are easily integrated into ROS thanks to ROS messaging system,

• ROS is maintained by many people.

• ROS is accepted by the community.

• Fast way for building, maintaining and improving robots features,

• Control of underlying low level hardware is possible with ROS.

• Increasing number of companies use ROS for their robots

• Available for wide range of applications.

• Theoretically ROS is language independent. It is implemented in Python, C++ and

Lisp and there are experimental libraries in Java and Lua.

• Many ROS powered robots already exist 34

• ROS can scale.

• No need for a robot experimentation can be performed in a simulation.

• Test can be performed though integrated unit/integration test framework “rostest”.

• Code developed in ROS could be integrated with other robot software frameworks.

Maybe a negative aspect of ROS is the learning curve which is pretty steep especially at
the beginning, Also ROS is tasted only with Unix based Operating Systems like Ubuntu
and Mac OS X. But the previous positive facts outweigh this negative aspect.

 5.6.2 ROS Distributions

35ROS is out there for several years now starting from 2008 when it first appeared. ROS
distribution is how ROS separated in different versions that are composed of different ROS
packages. ROS distributions are similar to Linux distribution. The aim of these distribution
is to provide to the developer a foundation of code. After the distribution release changes
34 https://robots.ros.org/category/ground/

35 http://wiki.ros.org/Distributions

P.Ioakeimidis 44

http://wiki.ros.org/Distributions
https://robots.ros.org/category/ground/

Integration of ROS, Turtlebot, RPLIDAR, RFID technologies and algorithm implementation for navigation and RFID tag detection in a warehouse.

are limited to bug fixes and improvements that doesn't break the core packages under the
ros-desktop-full, this applies for the whole community except of the higher level packages.

The distributions are separated two types the ones that are LTS this are with the Long
Term Support and other that are not LTS. The latest ROS LTS release is ROS Kinetic
Kame (released date: May 23rd 2015) which is the recommended distribution from ROS
official website. Although in this master thesis we used ROS Indigo Igloo36 (released date:
July 22ng, 2014) which is an LTS ROS distribution supported until April, 2019. This
distribution was chosen because of its compatibility with Turtlebot 2 robot. Also it is
possible to create your own ROS distributions in case an already released distribution
doesn't cover your needs for the type of robot you are creating.

Finally it worths mentioning that not all ROS distributions are compatible with all Linux
Ubuntu versions, sometimes there is one to one compatibility for example ROS Indigo
Igloo is compatible with Linux Ubuntu 14.04 LTS Trusty. Also not all ROS distributions are
backwards compatible with each other. This happens because of several changes
introduces between the version in message definitions. This leads to disability of ROS
nodes to communicate with each other. So it is not recommended to combine nodes
implemented on different ROS distributions.

5.7. Turtlebot
37 38Turtlebot as described on the official website is a low-cost, personal robot kit build on
top open-source robotic software. Turtlebot was created at Willow Garage by Melonee
Wise and Tully Foote in November 2010. Turtlebot uses ROS and it has several integrated

36 http://wiki.ros.org/indig & http://wiki.ros.org/Distributions

37 http://www.turtlebot.com/, https://en.wikipedia.org/wiki/TurtleBot, http://wiki.ros.org/Robots/TurtleBot,
http://wiki.ros.org/turtlebot/Tutorials/indigo

38 https://spectrum.ieee.org/automaton/robotics/diy/interview-turtlebot-inventors-tell-us-everything-about-the-
robot

P.Ioakeimidis 45

Figure 11: Indigo ROS logo, source:
http://wiki.ros.org/Distributions

https://spectrum.ieee.org/automaton/robotics/diy/interview-turtlebot-inventors-tell-us-everything-about-the-robot
https://spectrum.ieee.org/automaton/robotics/diy/interview-turtlebot-inventors-tell-us-everything-about-the-robot
http://wiki.ros.org/turtlebot/Tutorials/indigo
http://wiki.ros.org/Robots/TurtleBot
https://en.wikipedia.org/wiki/TurtleBot
http://www.turtlebot.com/
http://wiki.ros.org/Distributions
http://wiki.ros.org/Distributions
http://wiki.ros.org/indig

Integration of ROS, Turtlebot, RPLIDAR, RFID technologies and algorithm implementation for navigation and RFID tag detection in a warehouse.

functionalities and it also is available for navigating around, see in 3D and build useful and
exciting applications. Turtlebot is a solid base for developing many practical, research, and
scientific projects alongside with ROS. During the time this work was written there were
three main versions of the Turtlebot in the market : Original Turtlebot 1(discontinued),
Turtlebot 2 Family, and latest Turtlebot 3 Family. Nowdays Turtlebot can be found
anywhere and it can be purchased from numerous distributors and partners around the
world accessible from the official website39.

The main parts of any TurtleBot are the following:

• All Turtlebots use ROS - Robotic Operating System

• Although Turtlebot is a specific product it is released under the FreeBSD

Documentation License. In a nutshell it is open source 40.

• Turtlebot main hardware includes:

◦ Kobuki Base,

◦ Asus Xion Pro Live,

◦ Netbook (ROS Compatible),

◦ Kinect Mounting Hardware,

◦ TurtleBot Structure,

◦ TurtleBot Module Plate with 1 inch Spacing Hole Pattern.

• The robotic software development environment includes:

◦ An SDK for the TurtleBot,

◦ A development environment for the desktop

◦ Libraries for the visualization, planning, and perception, control and error

handling,

◦ Demo applications.

39 https://www.turtlebot.com/

40 http://www.turtlebot.com/opensource/

P.Ioakeimidis 46

http://www.turtlebot.com/opensource/
https://www.turtlebot.com/

Integration of ROS, Turtlebot, RPLIDAR, RFID technologies and algorithm implementation for navigation and RFID tag detection in a warehouse.

 5.7.1 Turtlebot 2

41 This chapter is dedicated to a brief presentation of Turtlebot 2 which is a 2nd generation
Turtlebot robot being compatible with “Specification for TurtleBot Compatible Platforms”
described on the ROS official website 42.

As you can observe on the next picture are presented the main hardware, software
included of Turtlebot 2 robot 43.

41 https://robots.ros.org/turtlebot/, https://www.turtlebot.com/turtlebot2/

42 http://www.ros.org/reps/rep-0119.html

43 http://www.turtlebot.com/turtlebot2/

P.Ioakeimidis 47

Figure 12: Turtlebot Robots of different types. Turtlebot 2 is used in this work, source:
http://wiki.ros.org/Robots/TurtleBot

http://www.turtlebot.com/turtlebot2/
http://www.ros.org/reps/rep-0119.html
https://www.turtlebot.com/turtlebot2/
https://robots.ros.org/turtlebot/
http://wiki.ros.org/Robots/TurtleBot

Integration of ROS, Turtlebot, RPLIDAR, RFID technologies and algorithm implementation for navigation and RFID tag detection in a warehouse.

Kobuki base is the main part that composes Turtlebot 2 is that part on top of which the rest
parts of Turtlebot are built. Netbook is that part of Turtlebot that hosts ROS and provides all
the necessary abilities to Turtlebot.

There are several differentiated variations of turtlebot the one used in this master thesis is
TurtleBot 2 with a netbook. Other variations are :

• TurtleBot 2e: which is a revision of the TurtleBot but with netbook being replaced
with a single board computer such as the 96 Boards CE computer, the DB410c.

• TurtleBot 2i: it has some extensions added to the previous Turtlebot which include
modular chassis and a native support of robotic arms. Specifically it includes
Pincher MK3 4 DOF Robotic Arm which adds functionality to Turtlebot to interact
with small objects, transforming the robot to a mobile manipulator.

• TurtleBot Euclid: It is a variation of TurtleBot 2 with main aim to make the out of the
box experience as easy as possible. It comes preassigned with Intel Euclid
Development Kit reinstalled with a web-interface to access the development
environment.

It is even possible to build a Turtlebot from the scratch by purchasing all the necessary

P.Ioakeimidis 48

Table 1: Turtlebot 2 Hardware, Software, License, source - https://www.turtlebot.com/turtlebot2/

https://www.turtlebot.com/turtlebot2/

Integration of ROS, Turtlebot, RPLIDAR, RFID technologies and algorithm implementation for navigation and RFID tag detection in a warehouse.

parts separately and using the documentation provided by the official ROS creators44.

In this work Turtlebot 2 as already described in previous chapters is being used for
navigation in a warehouse environment and detection of objects through RFID tags. It
obvious that there are hundreds of other implemented projects on top of Turtlebot and
even more other possible applications Turtlebot is waiting to be created.

5.8. Unix – Linux – Ubuntu Operating System

The reason this chapter is introduced to this master thesis is the fact that at this moment
ROS is mostly compatible with Ubuntu operating system. Ubuntu is an open-source
operating system. On the official website it is presented as “Ubuntu is an open source
software operating system that runs from the desktop, to the cloud, to all your Internet
connected things” 45. It is a Linux based operating system produced by Canonical. It is
build on top of Debian's architecture and infrastructure. It provides numerous features and
security directly “out-of-the box”. There are many Ubuntu releases not all of them are
compatible with every ROS distribution so ROS - Ubuntu distributions compatibility should
inspected.

5.9. ROS Basics

The main tool used in this thesis is ROS which controls the behavior of the robot. Although
presenting and describing ROS is not the purpose of this work. It could be beneficial to
present the main parts of it.

 5.9.1 ROS filesystem

46ROS filesystem is build on top of Linux filesystem. The main parts of ROS file system are:

• Packages: which contain libraries, tools, executable, etc. (lowest level)

• Package Manifest files: contain the description of the ROS packages and the

dependencies of the packages.

• Stacks: Collection of packages (higher level library)

• Stack Manifest files: contain the description of the Stacks and the dependecies.

ROS provides basic command line tools for the fast navigation between ROS packages.
The main commands are

• rospack: information about packages

44 Documentation provided by the official ROS creators http://www.turtlebot.com/learn/ and here
http://www.turtlebot.com/build/

45 https://www.ubuntu.com/

46 http://wiki.ros.org/ROS/Tutorials/NavigatingTheFilesystem

P.Ioakeimidis 49

http://wiki.ros.org/ROS/Tutorials/NavigatingTheFilesystem
https://www.ubuntu.com/
http://www.turtlebot.com/build/
http://www.turtlebot.com/learn/

Integration of ROS, Turtlebot, RPLIDAR, RFID technologies and algorithm implementation for navigation and RFID tag detection in a warehouse.

• rostack: information about stacks

• roscd : moving fast between ROS packages

• rosls : ls for ROS

ROS provides a set of shell commands called rosbash which contains useful bash
commands: roscd, rospd, rosd, rosls, rosed, roscp, and rosrun.

 5.9.2 Building packages - Catkin

47To build ROS packages, ROS provides its is possible to use catkin or rosbuild. In this
work for the developed code were used Catkin. It provides a fast, reliable and easy way to
organize and build your ROS packages.The command line tool catkin_make provides the
calls to cmake and make in the standard Cmake workflow.

 5.9.3 ROS packages

48The reason why this chapter is added is because packages is one of the most important
concepts. ROS software is organized in packages, everything in ROS is contained in
packages. A package can contain different type of files which can be ROS nodes, libraries,
datasets, configurations, etc. The concept of packages provides ROS with reusability.
Packages is the smallest part of ROS that can be build and released. Every ROS package
follow common structure the main directories and files are:

(a) include/package_name

(b) msg/

(c) src/package_name

(d) srv/

(e) CMakeList.txt

(f) package.xml

(g) CHANGELOG.rst

Also ROS packages provide as with several command line tools which are rospack,
catkin_create_pkg, catkin_make, rosdep, and rqt. To create ROS package
catkin_create_pkg is available and catkin_make command is used to build a ROS
package. To build successfully a ROS package the appropriate changes have to be
applied in CMakeList.txt and in package.xml files.

47 http://wiki.ros.org/ROS/Tutorials/BuildingPackages

48 http://wiki.ros.org/Packages

P.Ioakeimidis 50

http://wiki.ros.org/Packages
http://wiki.ros.org/ROS/Tutorials/BuildingPackages

Integration of ROS, Turtlebot, RPLIDAR, RFID technologies and algorithm implementation for navigation and RFID tag detection in a warehouse.

 5.9.4 ROS Graph concepts

49The main ROS graph concepts are:

50 Nodes: It is a simple executable that uses ROS to exchange messages between each
other. Ros node provides a command called rosnode. Nodes can be written in python
(rospy), in c++ (roscpp), and other languages.

Messages: The communication between nodes is performed by publishing messages to
topics. Messages are simple data structures and supports standard primitive types and
more complex data types of structures and arrays. For the messages there are msg files
that describe the fields of the messages. Through this files source code for different
programming languages is generated.

Topics: ROS nodes publish or subscribe to topics to send or receive messages and
achieve communication.

Master: It is used as a name service for ROS. With its helpt ROS nodes locate each other.

rosout: Similar to stdout or stderr.

roscore: A combination of ROS Master, ROS Parameter Server and rosout logging node.
Roslaunch starts automatically roscore.

 5.9.5 ROS Services and Parameters

Service provide another way of communication for the nodes with each other. Through
services nodes send requests and receive responses. ROS provides a command line tool
rosservice. It is possible to create srv files for describing services. Which is made of two
parts a request and a response.

ROS provides a Parameter Server stores parameters which are accessible through
network APIs and nodes use it to store and retrieve parameters at runtime. ROS provides
rosparam command.

 5.9.6 ROS publisher/subscriber

For both publisher and subscriber a different ROS node is created. It is possible to create
such nodes in c++ and python. To create a ROS node you need an already created catkin
workspace. ROS publisher publishes messages to a topic and at the same time on the
other side a ROS subscriber subscribes and consumes messages from that topic. In
python the abstract code would look like this 51:

Publisher

49 http://wiki.ros.org/ROS/Concepts & http://wiki.ros.org/ROS/Patterns/Communication

50 http://wiki.ros.org/ROS/Tutorials/UnderstandingNodes

51 http://wiki.ros.org/ROS/Tutorials/WritingPublisherSubscriber%28python%29

P.Ioakeimidis 51

http://wiki.ros.org/ROS/Tutorials/WritingPublisherSubscriber(python)
http://wiki.ros.org/ROS/Tutorials/UnderstandingNodes
http://wiki.ros.org/ROS/Patterns/Communication
http://wiki.ros.org/ROS/Concepts

Integration of ROS, Turtlebot, RPLIDAR, RFID technologies and algorithm implementation for navigation and RFID tag detection in a warehouse.

pub = rospy.Publisher('chatter', String, queue_size=10)

…

hello_str = "hello world %s" % rospy.get_time()
pub.publish(hello_str)

Subscriber

def callback(data):
 rospy.loginfo(rospy.get_caller_id() + "I heard %s", data.data)

…

rospy.Subscriber("chatter", String, callback)
rospy.spin()

To execute ROS publisher/subscriber first run roscore command and after rosrun
<package> <node> for each node.

 5.9.7 ROS service/client

For both service and client executables different ROS nodes are created. Services
receives requests from clients and publish responses to clients. Services and clients could
be written in both python and c++. The code in python would look something like this 52:

Service

 def handle_add_two_ints(req):

 print "Returning [%s + %s = %s]"%(req.a, req.b, (req.a + req.b))

return AddTwoIntsResponse(req.a + req.b)

…

s = rospy.Service('add_two_ints', AddTwoInts, handle_add_two_ints)
rospy.spin()

Client

rospy.wait_for_service('add_two_ints')
try:
 add_two_ints = rospy.ServiceProxy('add_two_ints', AddTwoInts)
 resp1 = add_two_ints(x, y)
 return resp1.sum
except rospy.ServiceException, e:
 print "Service call failed: %s"%e

To execute ROS service/client first run roscore command and after rosrun <package>
<node> for each node.
52 http://wiki.ros.org/ROS/Tutorials/WritingServiceClient%28python%29

P.Ioakeimidis 52

http://wiki.ros.org/ROS/Tutorials/WritingServiceClient(python)

Integration of ROS, Turtlebot, RPLIDAR, RFID technologies and algorithm implementation for navigation and RFID tag detection in a warehouse.

 5.9.8 ROS dependencies

ROS packages sometimes need external libraries and tools called system dependencies to
function properly. This dependencies are provided by the operating system and could be
installed with a ROS tool called rosdep which download and install this dependencies. The
dependencies needed by each ROS package are declared in the manifest files of these
packages. By typing the following rosdep install [package] you can download and install
the required dependencies.

 5.9.9 ROS basic commands

Ros provides different command line tools53 several; of these tools are presented here:

• roscd: cd directly to the desired location by name without the need of full path.

• roscore: runs the ROS core stack.

• rosdep: downloads and installs system dependencies of a package

• rqt-dep: present system dependencies in a graph form

• rosed: used for editing ROS files

• rosd: lists directories inside of a package

• rosls: lists files inside of a package

• roscp: copies files

• roscreate-pkg: creates the common Manifest, CMakelIsts, and other files

necessery for a ROS package.

• rosrun: runs executables

• roslaunch: launches a set of nodes on local and remote machines defined in an

XML configuration file.

• rosmake: builds all dependencies in ROS packages.

• rosmsg: command line tool for displaying information about ROS Message types.

• rospack: command line tools for retrieving and displaying information about

available ROS packages.

• catikin_create_pkg: creates new package

• catking_make: compiles created package

53 http://wiki.ros.org/ROS/CommandLineTools

P.Ioakeimidis 53

http://wiki.ros.org/ROS/CommandLineTools

Integration of ROS, Turtlebot, RPLIDAR, RFID technologies and algorithm implementation for navigation and RFID tag detection in a warehouse.

• rosparam: command line tool for handling ROS parameters.

• rossrv: command line tool for displaying information about ROS Service types.

• rosstack: command line tool for getting information about ROS stacks.

• rosservice: command line tool for listing and querying ROS Services.

• rostopic: command line tool for displaying information about ROS Topics

• rosnode: command line tool for displaying information about ROS Nodes.

• rqt-(tools): graphical tools provided by ROS.

 5.9.10 ROS actionlib

54Actionib stack is a standardized interface for interfacing with presentable tasks. It is used
in the context of the project for moving the base of the robot to a specific predefined
location on the map. This is done though a spinning thread which waits to receive a goals
with the position. This functionality provides the user with the ability to send a request to a
node to perform a specific task, and later receives a response to the previously send
request.

Through actionlib package it is possible to create long running goals with preemption
functionality. And also clients can send requests to the server though a client interface. The
communication of the ActionClient and ActionServer is performed though ROS Action
Protocol. Simple API is provided for client and server to request and execute(though
function calls and callbacks) goals.

The communication is performed though Goal, Feedback and Result messages. In the
context of this project Python API for SimpleActionClient was used.

54 http://wiki.ros.org/actionlib

P.Ioakeimidis 54

Figure 13: This pictures shows how the communications is performed between the client and server
application, source: http://wiki.ros.org/actionlib

http://wiki.ros.org/actionlib
http://wiki.ros.org/actionlib

Integration of ROS, Turtlebot, RPLIDAR, RFID technologies and algorithm implementation for navigation and RFID tag detection in a warehouse.

 5.9.11 ROS parameters

55ROS provides as with a parameter server which is a shared, multivariable dictionary that
is traversable through API accessible via network provided by ROS. Through the
parameter server nodes can modify and retrieve data from parameters. Parameter server
is implemented in XMLRPC and runs in ROS Master. The usage of XMLRPC makes the
API accessible though normal XMLRPC libraries. ROS paramteres support specific data
types like 32-bit integers, Booleans, Strings, Doubles, etc. As already presented previously
in ROS basic commands rosparam tools is used for working with ROS parameters56. The
YAML syntax is used by rosparam command line tool to get and set parameters on the
Parmeter Server. The <rosparam> let us use the rosparam YAML files. The <rosparam>
tag is put in the .launch file. It is preferable to use parameters for static data because of
luck of high performance.

The reason why ROS parameters are presented here is because in the context of this
project's ROS parameters where used and appeared to be useful. Specifically custom
parameters where used to store information like duration for the robot to complete the goal
set or the radius around the goal for considering a goal set to be successful. The data
stored in parameters is for configuration which means it is static.

 5.9.12 Slam

57Slam stands for Simultaneous Localization and Mapping. Slam is a technique for
constructing and updateing a map. Slam technique provides us with the ability to keep
track of the current position of the robot and at the same time build a map of an unknown
environment. ROS slam node is called slam_gmapping. In our project our robot uses
RPLidar and Kinect to create a 2-D occupancy grid from laser and pose data collected by
the robot Turtlebot.

 5.9.13 ROS Simulations

The implementation of this master thesis started in a simulated world and later it was
transferred to the physical turtlebot in the lab.

There are two reasons for someone to use ROS in a simulated environment. First reason
is that maybe a physical robot is not available at the moment of development and second
reason is that maybe we want to try and test everything in a perfectly simulated
environment before transferring the application into the physical robot. It is important to
mention that no dramatic changes are required for the transferred application.

Next are discussed some of the advantages using Turtlebot in simulation:

55 http://wiki.ros.org/Parameter%20Server

56 http://wiki.ros.org/roslaunch/XML/rosparam

57 https://en.wikipedia.org/wiki/Simultaneous_localization_and_mapping & http://wiki.ros.org/Build%20a
%20map%20with%20SLAM

P.Ioakeimidis 55

http://wiki.ros.org/Build%20a%20map%20with%20SLAM
http://wiki.ros.org/Build%20a%20map%20with%20SLAM
https://en.wikipedia.org/wiki/Simultaneous_localization_and_mapping
http://wiki.ros.org/roslaunch/XML/rosparam
http://wiki.ros.org/Parameter%20Server

Integration of ROS, Turtlebot, RPLIDAR, RFID technologies and algorithm implementation for navigation and RFID tag detection in a warehouse.

1. Since the hardware is not required in the simulation and everything is done by
software, we avoid the possibility of damaging the expensive hardware.

2. It is less time consuming in contrast of using a physical robot.

1. no configuration is needed,

2. no battery charging is required,

3. no hardware repairing,

3. Within the simulated environment it is possible to run experiments in different
conditions with different types robots, in different conditions, with multiple different
sensors etc. It is possible to save and reproduce the exact conditions to repeat
certain behaviors of the robot or perform multiple tests on the system with different
parameters set.

After using the perfect world of simulation it is always important to try the final result on the
physical robot. Because simulation it is not capable of reproducing all the parameters that
can appear in real world.

 5.9.14 ROS Gazebo

ROS provides us a package called turtlebot_simulator that contain launchers for three
different simulation environment for TurtleBot. The positive fact about ROS simulation API
is almost unchanged compared to the physical Turtlebot. In this master thesis for
performing simulations only the Gazebo simulator was used.

• First of all Gazebo is an open-source simulator.

• It is a multi-robot simulator which allows us to perform both indoor and outdoor

simulations.

• Through Gazebo Tutrlebot can interact physically interact with objects.

• The feedback produced and collected from sensors is realistic.

• It very simple to use, intuitive and well-designed simulator which gives as the

possibility to run, test algorithms and design robots, etc.

• Gazebo uses URDF 3D model.

• It is possible to design custom world in Gazebo.

• It is possible to add sensors to the robot in Gazebo.

• Etc.

P.Ioakeimidis 56

Integration of ROS, Turtlebot, RPLIDAR, RFID technologies and algorithm implementation for navigation and RFID tag detection in a warehouse.

 5.9.15 ROS RVIZ

Rviz is a tool for ROS 3D visualization, data collected from sensors is visualized with RVIZ
as well as the information about the states. Data produced from sensors like rplidar, kinect,
infrared, camera etc. can be visualized with RVIZ. It is one of the most important and
useful tools while working with ROS and Turtlebot and it is used both in simulation and
physical world experiments. RVIZ tool comes with ROS installation. It gives us the
possibility to visualize all of the data from navigation stack. It visualizes the world how the
robot sees it, for example in our case it is useful because it is possible to see the point
cloud around the Turtlebot, the created map from the RPLIDAR and the path planned by
the global and local planner. Also through RVIZ it is possible to specify Robots location on
the map though “2D Pose Estimate” set a goal to the robot through the “2D Nav Goal”,
measure distance on the map through “Measure” and get the relative coordinates through
“Publish Point”.

5.10. ROS Navigation Stack

[6]ROS navigation stack58 59 provides us with a set of algorithms that take information from
sensors, odometry an a goal position and produce velocity commands to move the mobile
base of the robot. The user through standard messages can control the robot. ROS
navigation stack can be applied and used with any robot that runs ROS with only several
configurations performed.

58 http://wiki.ros.org/navigation

59 For more information about ROS navigation stack and other ROS parts refer to the book Effective
Robotics Programming with ROS Third Edition by Anil Mahtani, Luis Sanchez, Enrique Fernandez, Aaron
Martinez, Publisher Packt, 2016.

P.Ioakeimidis 57

Figure 14: In this diagram is presented the organization of the ROS Navigation Stack.

http://wiki.ros.org/navigation

Integration of ROS, Turtlebot, RPLIDAR, RFID technologies and algorithm implementation for navigation and RFID tag detection in a warehouse.

ROS Navigation Stack is organized in a specific way which is presented in the following
diagram.

The main parts from ROS Navigation Stack affecting our project are the 1)Gmapping for
the creation of the map from the data collected from RPLidar 2)amcl for the localization of
the robot on the map, and 3)move_base for moving the robot pro grammatically through
Pyhon code by setting a goal.

ROS Navigation stack is very importan for this project because it is used in the following
parts:

1. Map creation : before navigating in an unkown environment a maps has to be
created. So later it would be easier to perform movement, navigation and path
planning for the robot.

2. Localization : by using ROS navigation it is possible to perform localization of the
robot by estimation the relative position of the robot on the map. To perform this
functionality ROS navigation stack provides as with amcl package.

3. Path Planning : the path is planned for the robot to follow. In this project RVIZ and
move_base packages are used to send goals (pose) to the robot's mobile base.

 5.10.1 Transform Frames(tf) software library

60TF manages the transform tree, lets us to keep track of multiple coordinate frames over
time. Tf defines offsets for translation and rotation between different coordinate frames. tf
maintains the relationship between coordinate frames in a tree structure buffers in time,
and lets the user transforms points, vectors, etc between any two coordinate frames at
any point in time. The robotic system is composed of 3D coordinate frames that change
over time, for examples there is world frame, base frame, gripper frame, head frame, etc. tf
keep track of all these frames over time, and allows you to ask questions about position of
each part of the robot, about the pose of the objects relative to other frames, about the
pose of the base frame. For example if we have a mobile base “base_link” on top of which
we have attached a laser “base_lase” with 10cm backwards and 20 cm above, the tf will
give us a translational offset that relates the “base_link” frame to the “base_laser” frame,
so by calling the tf library we will get the transformation. In the following picture is
represented a simple example for better understanding of the transformation explained
previously.

60 http://wiki.ros.org/navigation/Tutorials/RobotSetup/TF

P.Ioakeimidis 58

http://wiki.ros.org/navigation/Tutorials/RobotSetup/TF

Integration of ROS, Turtlebot, RPLIDAR, RFID technologies and algorithm implementation for navigation and RFID tag detection in a warehouse.

We can create if needed tf broadcaster and then a listener. It is important to remember that
the geometry of the robot is specified in the URDF file where it is configured. If we have
our tf broadcaster running we can observe the transformation tree by running the following
command : ros tf view_frames.

In this project tf transform was used when RPLidar sensor was installed on top of the
Turtlebot. It was important to use the tf transformation of the RPLidar sensor for the
creation of the map and later for accurate navigation in the created map.

 5.10.2 Sensor Sources

61On a robot there could be different types of sensors for scanning the area and avoid
obstacles in the world. The information from the sensors is consumed by the navigation
stack. For the navigation stack Move Baseto be able to get this sensor information sensors
must publish to : sensor_msgs/LaserScan or sensor_msgs/PointCloud messages over
ROS. Also it is not always necessary to implement this part because several sensors have
already covered this part by default.

 5.10.3 Odometry Source

62As it is obvious from the Navigation Stack picture, navigation stack gets the robot's
Odometry information. Odometry should be published and consumed by the navigation
stack. Odometry information is published using tf and nav_msgs/Odometry message. tf
first detects robot's location in the world and relate sensor data to a static map. The
odometry source is responsible for publishing the transform about the coordinate frame
that it is responsible and manages. The nav_msgs/Odometry message holds an
approximation of the position(in odometric frame) with the geometry_msgs/Pose message
and velocity(in child frame – mobile base) of a robot with geometry_msgs/Twist message.

61 http://wiki.ros.org/navigation/Tutorials/RobotSetup/Sensors

62 http://wiki.ros.org/navigation/Tutorials/RobotSetup/Odom

P.Ioakeimidis 59

Figure 15: This picture presents an example where a laser was installed on top of a robot so a tf
library was used to get the translational offset that creates a relation between the base_link and the

base_laser frame. Source: http://wiki.ros.org/navigation/Tutorials/RobotSetup/TF

http://wiki.ros.org/navigation/Tutorials/RobotSetup/Odom
http://wiki.ros.org/navigation/Tutorials/RobotSetup/Sensors
http://wiki.ros.org/navigation/Tutorials/RobotSetup/TF

Integration of ROS, Turtlebot, RPLIDAR, RFID technologies and algorithm implementation for navigation and RFID tag detection in a warehouse.

 5.10.4 Base Controller

A robot is controlled though the Base Controller. As shown in the previous Figure it is
platform specific so it is not provided by ROS. Base controller node must subscribe to the
topic called “cmd_vel”, and by generating the proper motor commands it should move the
platform with velocities (angular and linear).

 5.10.5 Map Server

63Map Server is an optional provided node and it is not required by the navigation stack.
Map server gives all the necessary functionality for map handling. It is possible to create a
map of our environment dynamically and later save them in a custom file with .yaml format
which contains the map meta-data and an image file (for example could be .png format)
which contains the picture of the occupancy data. The occupancy grid is presenting the
state of the wold in which the robot navigates, with a different color depending on the
occupancy of each pixel(white:free, darker-blacker:occupied, in between:unknown) this
image is in gray scale(although colored images are allowed). The .yaml format has to be
organized in a specific manner, example is presented in the following picture:

required fields: image, resolution, origin, occupied_thresh, free_thresh, negate

optional parameter: mode

Map_server and map_saver command line tools are provided by ROS. Map_server is a
ROS node that reads a map from a disk and offers it through a ROS service. Map_saver
is a ROS tool that save a created map to the disk.

 5.10.6 AMCL (Adaptive Monte Carlo Localization approach)

64AMCL is an optional provided node. AMCL is a probabilistic localization system that is
responsible for the robot movement in 2D. The Adaptive Monte Carlo Localization
approach helps the robot to detect its pose in a known map that is provided or created
from laser scan. Amcl uses as input the maps created from laser scan, laser scans, and
transform messages, amcl produces an estimation of the position(pose) of the robot. It is
important to note that AMCL is configurable algorithm and in some circumstances it is very
useful for optimization reasons.
63 http://wiki.ros.org/navigation/MapBuilding & http://wiki.ros.org/map_server

64 http://wiki.ros.org/amcl

P.Ioakeimidis 60

Figure 16: Example of how .yaml format should be organized, source: http://wiki.ros.org/map_server

http://wiki.ros.org/amcl
http://wiki.ros.org/map_server
http://wiki.ros.org/map_server
http://wiki.ros.org/navigation/MapBuilding

Integration of ROS, Turtlebot, RPLIDAR, RFID technologies and algorithm implementation for navigation and RFID tag detection in a warehouse.

 5.10.7 Move Base

65Move_base package is one of the most important parts of ROS navigation stack used in
this master thesis because it used for the navigation of the Turtlebot and specifically for
sending goals. The move_base package is provided by ROS directly and it contains all the
necessary navigation tools for the Turtlebot navigation pro grammatically.

Move base_base package provides us with the implementation an action and specifically
the actionlib package presented previously, that why though move_base we send the goals
to our robot. This is done by specifying the target positions and orientation so the robot
moves towards these goals and the mobile base of the robot attempts to reach the
destination.

Move_base node links together both a global and a local planner which are attached to
interfaces of nav_core. To complete the navigation tasks set move_base keeps two cost
maps, one for global and on for local planner specified in costmap_2d.

Move_base is one of the most important parts of ROS navigation stack. Through the
move-base node the configuration and the interaction with the navigation stack of the robot
is succeeded. The picture of the Navigation Stack Setup depicts the abstract view of the
move_base node and its interaction with other components of the navigation stack. As
shown in following picture move_base provided default recovery behaviors, with the help of
these behaviors it can achieve the goal that is set.

Before running the move_base node on a robot it is important to configure this robot
properly. A properly configured robot will make an effort to accomplish a goal pose with its
base within user specified tolerance. Move_base node will reach the goal within the
tolerance set by the user or signal failure back to the user. As presented in the above
picture move_base node may optionally perform recovery behaviors when the robot
perceives itself as stuck. Next the recovery actions are presented to attempt to clear out

65 http://wiki.ros.org/move_base

P.Ioakeimidis 61

Figure 17: This picture shows the default recovery behaviors that move_base apply,
source: http://wiki.ros.org/move_base

http://wiki.ros.org/move_base
http://wiki.ros.org/move_base

Integration of ROS, Turtlebot, RPLIDAR, RFID technologies and algorithm implementation for navigation and RFID tag detection in a warehouse.

space:

1. Clear obstacles outside of user-specified region on the robot's map.

2. Perform if possible an in-place rotation to clear out space.

3. If step 2 fails the robot aggressively clears its map (removing all obstacles outside
rectangular region in which it can rotate in place)

4. Following to step 3 the robot will perform in-place rotation.

5. If all previous steps fail the goal is considerd as infeasible by the robot and notify the
user that it has aborted.

The configuration of this recovery behaviors is done through the recovery_behaviors
parameter and disables through recovery_behavior_enabled parameter.

The move_base node is implementing a SimpleActionServer. The goals passed to
move_base node are containing messages of geometry_msgs/PoseStamped type.
Finally it is important to mention that move_base node contains also other ROS navigation
components that has their own ROS APIs : costmap_2d, nav_core, base_local_planner,
navfn, clear_costmap_recovery, and rotate_recovery. This packages are used as
behavior plugins for the move_base node.

 5.10.8 Base Local Planner

66The base_local_planner package given a plan to follow and a costmap provides a
controller that produces velocity commands that make the mobile base in the plane. The
base_local_planner package implements both Trajectory Rollout and Dynamic Window
approaches to local robot navigation on a plane. The purpose of the controller is to connect
the path planner with the robot. With the help of a map the planer produces the movement
trajectory so the robot can move from a starting position to a goal position. A value function
represented as a grid map is created locally around the robot. This value function matches
traversing costs to the grid cells. Finally the controller produces and sends dx, dy and
dtheta velocities to the robot.

66 http://wiki.ros.org/base_local_planner

P.Ioakeimidis 62

http://wiki.ros.org/base_local_planner

Integration of ROS, Turtlebot, RPLIDAR, RFID technologies and algorithm implementation for navigation and RFID tag detection in a warehouse.

 5.10.9 Global Planner

67Global_planner package implements a path planner library and a node for the robot
navigation. Global planner package provides different parameterizations. Global planner
uses the static global cost map and depending on the costs it creates a Gloabl Plan from a
start point to and end point.

 5.10.10 Clear Costmap Recovery

68Clear costmap recovery provides a simple recovery behavior for the navigation stack that
simply clears the space in the navigation stack's costmaps returning to the static map
beyond a given radius around the robot.

 5.10.11 Rotate Recovery

69Rotate recovery package implements a recovery behavior for the ROS navigation stack.
Through rotate recovery navigation stack rotates the robots 360 degrees in an attempt to
clear space in the costmaps that surrounds the robot. The rotation is performed if possible
and no local object prevents the 360 degree rotation.

 5.10.12 Costmap_2D

70 Costmaps represent the data collected by the sensors from the surrounding
environment. Costmap_2D package implements the functionality of data collection from
the sensor and representation in a 2D and 3D occupancy grids. Also in the 2D costmap
inflated costs are represented based on the occupancy grid and the user specified inflation
radius.

67 http://wiki.ros.org/global_planner

68 http://wiki.ros.org/clear_costmap_recovery

69 http://wiki.ros.org/rotate_recovery

70 http://wiki.ros.org/costmap_2d

P.Ioakeimidis 63

Figure 18: Representation of trajectory planning made by the
base local planner,

source:http://wiki.ros.org/base_local_planner

http://wiki.ros.org/costmap_2d
http://wiki.ros.org/rotate_recovery
http://wiki.ros.org/clear_costmap_recovery
http://wiki.ros.org/global_planner
http://wiki.ros.org/base_local_planner

Integration of ROS, Turtlebot, RPLIDAR, RFID technologies and algorithm implementation for navigation and RFID tag detection in a warehouse.

Costmaps update themselves by automatically keeping a subscription to sensors topics
over ROS. The map updates are performed in a rate specified in the update_frequency
parameter. The updates on the costmap could be either a mark, a clear or both according
to the sensor data. Each cell in a costmap can be Occupied, Free or Unknown space. For
the proper navigation, obstacle detection and obstacle representation in costmap it is
assumed that tf transforms are properly configured between the coordinate frames,
gloabl_frame parameter, the robot_base_frame parameter, and the sensor sources.

P.Ioakeimidis 64

Figure 19: In this picture are observable different
types of cells in a costmap. red: obstacles,

blue:inflation around the obstacle,
hexagon:robot footprint. source:
http://wiki.ros.org/costmap_2d

Figure 20: In this picture is presented a map in
RVIZ. Black dot: Turtlebot, black lines: obstacles

(static map), light blue inflation, etc.

http://wiki.ros.org/costmap_2d?distro=indigo

Integration of ROS, Turtlebot, RPLIDAR, RFID technologies and algorithm implementation for navigation and RFID tag detection in a warehouse.

The values in each cel of the costmap range from 0 to 255. The five different sybols each
have a different value Lethal(255), Inscribed(253), Possibly circumscribed(128-252),
Freespace(0), and Unknown(255).

 5.10.13 nav_core

71Nav_core implements common interfaces for performing navigation actions for robots.
Previously described parts of navigation stack like BaseGlobalPlanner, BaseLocalPlanner,
and RecoveryBehavior interfaces are provided by nav_core package. Through this
interfaces new versions of this planners, controllers, or recovery behaviors can be
implemented. So as obvious from the ROS Navigation stack nav_core interfaces are the
base interfaces for the navigation stack. The planners that are used as plugins in the
move_base node must implement the interfaces provided by nav_core package.

71 http://wiki.ros.org/nav_core

P.Ioakeimidis 65

Figure 21: Five different symbols for the costmap values are defined. Lethal, Inscribed,
Possibly circumscribed, Freespace, and Unknown costs. Depending of the distance from the
object and the decay value which is used difined,all values are assigned between the
Freespace and Possibly Circumscribed cell. Source: http://wiki.ros.org/costmap_2d?
distro=indigo

http://wiki.ros.org/nav_core
http://wiki.ros.org/costmap_2d?distro=indigo
http://wiki.ros.org/costmap_2d?distro=indigo

Integration of ROS, Turtlebot, RPLIDAR, RFID technologies and algorithm implementation for navigation and RFID tag detection in a warehouse.

 5.10.14 Navfn

72Navfn package implements a fast and interpolated navigation function that creates plans
for a mobile base. Navfn package produce a plan of minumum cost from a start point to an
end point for a circular robot that operates on a costmap described previously.

 5.10.15 Gmapping

73Slam is used in this project for Simultaneous Localization and Mapping. For this
functionality ROS provides a package called Gmapping that implements a node called
slam_gmapping. From the data collected from lasers and odometry coming from mobile
base, gmapping node builds a 2D occupancy grid map.

 5.10.16 ROS Sending Simple Goals

74To send simple goals to our robot Turltbot 2 we need to use several packages from ROS
Navigation Stack. We want to send a goal with the desired location to the robot and it
should complete this task by reaching the set location. To complete the goal the robot
needs (a) previously created static map, (b) rplidar for scanning the surrounding
environment, (c) amcl for localizing, (d) Local and global planners, and (b) generally ros
navigation stack. To send Simple Goals to the robot we use actionlib75 library and
move_base package.

72 http://wiki.ros.org/navfn

73 http://wiki.ros.org/gmapping

74 http://wiki.ros.org/move_base & http://www.hotblackrobotics.com/en/blog/2018/01/29/action-client-py/

75 http://wiki.ros.org/actionlib

P.Ioakeimidis 66

Figure 22: This picture presents the parts of ROS
Navigation stack that adhere from nav_core

interface, source: http://wiki.ros.org/nav_core?
distro=indigo

http://wiki.ros.org/actionlib
http://www.hotblackrobotics.com/en/blog/2018/01/29/action-client-py/
http://wiki.ros.org/move_base
http://wiki.ros.org/gmapping
http://wiki.ros.org/navfn
http://wiki.ros.org/nav_core?distro=indigo
http://wiki.ros.org/nav_core?distro=indigo

Integration of ROS, Turtlebot, RPLIDAR, RFID technologies and algorithm implementation for navigation and RFID tag detection in a warehouse.

Through actions (actionlib) it is possible to send requests and receive responses. Actionlib
provides as with feedback functionality which is useful because it provides ActionCLient
with information about the progress of a goal like current position. Client and Server
communicate through Goal, Feedback and Result messages. Actionlib is a ActionClient
and ActionServer who communicate through a “ROS Action Protocol”. Actionlib provides as
with the API for setting an Action Server and an Action Client, so client can request goals,
and server can execute these goals through function calls and callbacks.

Move_base package provides as with the implementation of and an action (actionlib). We
give a goal in the robot's world and the move_base will perform all the necessary steps to
complete the goal with the mobile base of the robot. Move_base node implements a
SimpleActionServer which implements a single goal policy on top of the AcitonServer
class. Goals sent are geometry_msgs/PoseStamped message type. The communication
with the move_base node is performed through the implemented SimpleActionCLient
interface. Move_base combines global planner, local planner and it holds two costmaps to
accomplish the navigation tasks. Finally we send a goal to our robot, while all the rest is
performed by the configured navigation stack.

Next are presented several parts from the implemented code for sending Goals.

Create the Action Client called 'move_base' with action type MoveBaseAction,
make the thread spin

self.__action_client = actionlib.SimpleActionClient('move_base', MoveBaseAction)

...

Wait for the Action Server to start before it is able to receive goals

wait = self.__action_client.wait_for_server(rospy.Duration(5))

...

Send the created Goal to Action Server

self.__action_client.send_goal(goal, self.done_cb, self.active_cb,
self.feedback_cb)

5.11. Turtlebot Basics

In the Appendix of this thesis are described the following issues

1. Turtlebot – Map Creation and Navigation

On top of Turtlebot is mounted Kinect sensor which is responsible of the scanning process
of the surrounding area, also as we do it is possible to mount another sensor like a lidar for
this purpose. After that ROS has all the necessary tools for the creation of the map. The

P.Ioakeimidis 67

Integration of ROS, Turtlebot, RPLIDAR, RFID technologies and algorithm implementation for navigation and RFID tag detection in a warehouse.

steps are simple and are enumerated in the appendix. It is possible to create a map of a
physical world and a simulation as well for performing experimentation.

2. Turtlebot – Autonomous Navigation

Turtlebot has several ways to move around.

• By sending velocity commands on “/cmd_vel” topic to the robot this approach is

not used in this work.

• By running turtlebot_teleop package so the turtlebot can be navigated from the

keyboard, ps3 joystick or other input source with implemented launch file. This
approach is used for the creation of the map.

• Using the move_base package alongside with several other packages for

autonomous navigation by sending positions/goal of the desired position. This
approach is used in the implemented algorithm for the navigation.

3. Turtlebot – Obstacle Avoidance - Localization

Obstacle avoidance and localization are implemented in ROS by default. The robot localize
itself by using the collected data from the laser and the odometry data that are available to
the robot. Turtlebot detects with the help of packages like amcl, etc its position on the map.
Data from kinect or lidar is published on a topic, this sensor produced data of the
surrounding environment is used by other ROS nodes like amcl for the transformation from
map coordinates to the move_base coordinates. The main task of amcl is with the help of
the odometry and sensor data to compute the position of the robot on the map. Finally the
position of the robot is represented on the map.

 5.11.1 TurtleBot Navigation Stack
76According TurtleBot navigation stack we must consider 4 important things which are main
features:

• Key files governing Turtlebot navigation are launch and yaml files contained on

turlebot_navigation package on launch and param directories respectively.

• Move base provides Tutlebot with navigation motion. Move base contains cost maps

which give it the opportunity to create global and local plans.

◦ Planner

▪ Change speed limits

▪ Goal tolerance

76 http://wiki.ros.org/turtlebot_navigation/Tutorials/indigo/Setup%20the%20Navigation%20Stack%20for
%20TurtleBot

P.Ioakeimidis 68

http://wiki.ros.org/turtlebot_navigation/Tutorials/indigo/Setup%20the%20Navigation%20Stack%20for%20TurtleBot
http://wiki.ros.org/turtlebot_navigation/Tutorials/indigo/Setup%20the%20Navigation%20Stack%20for%20TurtleBot

Integration of ROS, Turtlebot, RPLIDAR, RFID technologies and algorithm implementation for navigation and RFID tag detection in a warehouse.

▪ Cost computing biases

• Amcl provides localization for TurtleBot

• Gmaping provides TurtleBot with map building capabilities

P.Ioakeimidis 69

Integration of ROS, Turtlebot, RPLIDAR, RFID technologies and algorithm implementation for navigation and RFID tag detection in a warehouse.

6. Turtlebot – ROS Implemented Algorithm for Navigation

One of the main parts in this master thesis is the implementation of algorithm for the
navigation in an indoor environment (which could be used although for outdoor controlled
environment as well). The main purpose of this algorithm is to set missions (goals) to the
Turtlebot through ROS. Turtlebot or any other robot that is supporting ROS can be
controlled through the program implemented. In the next paragraphs the main parts of this
algorithm are described and the logic behind it.

6.1. Explanation of the desired movement Turtlebot should perform

Lets assume that we have a warehouse with multiple corridors in such case the robot can
navigate inside of the warehouse in a specific manner. In the next pictures two possible
routes are presented.

Both pictures represent the scan of a warehouse from the RPLIDAR sensor mounted on to
of our Turtlebot. On the first Figure the robot moves always to the end of the corridor and
then returns before moving to the next corridor. On the second Figure the Turtlebot moves
through the corridors by reaching the end of one corridor and then moving to the next
crossing it the opposite direction.

The approach followed in this work is presented in the Figure 1. The reason why the first
approach is more appropriate is because we are interested the robot to traverse the
corridors always in the same direction. As described we are using two RFID antennas

P.Ioakeimidis 70

Figure 23: Robot movement first approach Figure 24: Robot movement second approach

Integration of ROS, Turtlebot, RPLIDAR, RFID technologies and algorithm implementation for navigation and RFID tag detection in a warehouse.

mounted on top of the Turtlebot. Also RFID antennas scan(emit RF waves) only when the
robot moves for the first time in each corridor so the scan is performed only in one direction
and the antennas are deactivated when the robot returns back. This approach is followed
because it is important to know exactly the side where each RFID antenna detected each
RFID tag.

On the second Figure is another approach in this case we should keep track each time the
robot change direction to keep the knowledge about robots direction to acquire knowledge
about the side of the detected RFID tags.

Another solution could implement a completely different approach. In any case it is
important to keep in mind that the information about the side of each corridor where RFID
tags were detected is important for the final result. So another approach could cover both
cases by implementing a dynamic algorithm with the ability to detect the exact direction of
robot movement and determine the side of each RFID antenna.

The final choice is the movement described first because as it already mentioned we want
to scan each side of warehouse's corridors with a specific RFID antenna. So the left RFID
antenna always scans the left side of the corridor and the right RFID antenna scans always
the right side of the corridor. In any other case the RFID antennas should be deactivated or
paused so no RFID scan is performed. This approach is the simplest for getting the
information on which side of the corridor each RFID tag was detected.

 6.1.1 Description of the Algorithm

For the implementation of the navigation algorithm ROS packages where used. ROS
provides most of necessary packages needed for implementing such behaviors. In this
subchapter is presented the general algorithm created for ROS robots and specifically in
our case Turtlebot navigation. The implemented algorithm should meet the next goals:

1. Avoiding obstacles. (implemented by ROS in move_base package)

2. Setting parameter time limit for reaching current goal – position.

3. If goal is not reached within the time limit set goal as failed.

4. Setting parameter number for repeating waiting time if robot is still moving.

5. If robot is still moving wait again for time limit duration.

6. Setting parameter retry limit for reaching current goal – position.

7. If current goal failed retry for number of times.

8. Move to the next goal-position in case of failure or success reaching the current
goal-position.

P.Ioakeimidis 71

Integration of ROS, Turtlebot, RPLIDAR, RFID technologies and algorithm implementation for navigation and RFID tag detection in a warehouse.

9. Keep a list of successfully reached positions.

10.Setting parameter for radius

11. In case if an obstacle appears and the robot avoids it check if the robot passed by
any other possible goal position within a preset radius.

12.Robot has to move to the positions exactly in the predefined order and not in
reverse.

13.Mission of the predefined positions – goals is defined in a JSON file.

14.Scan for RFID tags only while passing for the first time from a warehouse corridor
(always at the same direction).

15.Dynamically detecting the side on which RFID antenna is scanning. (future)

16.Stop scanning for RFID tags if already passed from that position in the past.(future)

17.Publish current goal (starting position, current position, destination position)

18.Collect Data from RFID tags

19.Publish Data from RFID tags

20. If the position of the goal is not reachable, Turtlebot stops the movement and retries
to complete the goal again for number of times specified in the parameters

21. If Turtlebot fails with the current goal it continues with the next goal in the JSON file.
The current goal is considered as failed.

22. In case that the Turtlebot passes near a goal that isn't completed, and the distance
from this goals is less than the predefined radius the goal is considered as
successfully completed.

23.Starts an OdomService that provides the Odometry data that contains the position
of the Turtlebot in the world to the Clients.

6.2. Steps performed by the navigation algorithm

Here is presented the general architecture of the navigation algorithm which was used for
navigation of Turtlebot. Although because it uses ROS it can be used on any robot that
supports ROS.

Parameters:

1) goal wait duration : Parameter for the maximum waiting time duration for the current

P.Ioakeimidis 72

Integration of ROS, Turtlebot, RPLIDAR, RFID technologies and algorithm implementation for navigation and RFID tag detection in a warehouse.

goal to complete (in seconds)

2) goal repeat wait max : Parameter for the number of repetitions of waitings for the
goal to complete if robot is still moving

3) goal re-execution max limit : Parameter for the number of maximum re-executions
of the current goal in case of failure or exhaustion of waiting time

4) radius : Parameter for the radius around the goal. If robot passes from a position
inside this radius goal count as success

Algorithm:

 1 Read all predefined goals from the JSON file which form a path.

 2 During the robot navigation perform validation of completed goals within the
“radius”.

 3 For each goal (position and quaternion) on the path.

 3.1 Construct goal to pass to the robot.

 3.2 Repeat for “goal re-execution max limit” times if goal not completed
successfully

 3.2.1 Send constructed goal to Action Server to be executed by the robot.

 3.2.2 Wait for the robot to finish the execution of the goal for duration
specified “goal wait duration”

 3.2.3 If the robot is still executing the goal wait again for duration specified
in “goal wait duration” for “goal repeat wait max” times.

 3.2.4 - If goal finished within the allocated time with goal status
“SUCCEEDED” move to the next goal, set goal as completed and move to
the next goal.

 3.2.5 - Else cancel goal

 4 Re-validate if any of passed positions are within the radius of any of goals in the
path.

 5 Print successfully completed goals.

Also except of the previous steps described a simple ROS service is implemented for
getting the Turtlebot Odometry data when it is needed. The purpose of this ROS service is

P.Ioakeimidis 73

Integration of ROS, Turtlebot, RPLIDAR, RFID technologies and algorithm implementation for navigation and RFID tag detection in a warehouse.

when a RFID tag is detected the position of the Turtlebot could be acquired.

For the implementation of the algorithm was used ROS move_base package.

1. ROS “actionlib” package for the creation of a SimpleActionClient of
MoveBaseAction type used to send goals to the Action Server, wait for the goal to
be executed, and get state of the goal.

2. ROS “Pose” geometry message type, which is composed of “Point” which is the
position on the map and the “Quaternion” which is the angle.

3. “move_base” package contains all the necessary functionalities for the navigation of
the robot.

4. Subscription to ROS “odom” topic for receiving the odometry of Turtlebot

5. ROS parameters for setting parameters

6. ROS service for providing Odometry data.

The created algorithm for Turtlebot Navigation was tested in a simulated environment. An
indoor warehouse like environment was build with Gazebo tool to simulate a real world
warehouse.

6.3. Schemes, Pictures of the algorithm, RVIZ and Gazebo

P.Ioakeimidis 74

Figure 25: Gazebo simulated world of a warehouse, Turtlebot is visible at bottom corner of the room

Integration of ROS, Turtlebot, RPLIDAR, RFID technologies and algorithm implementation for navigation and RFID tag detection in a warehouse.

After creating this simulated warehouse world in Gazebo it was possible to create a map of
this warehouse with RVIZ tool. After creating and saving the warehouse map it is possible
to navigate in the warehouse by using the created map and set goals to Turtlebot through
the created algorithm. Next are the enumerated the steps that should be performed before
running a simulation experiment:

1. Create your own world in Gazebo

2. Use RVIZ, gmapping, map_server, turtlebot_teleop to create a map of the simulated
world.

3. In RVIZ with Publish Point functionality find all the positions-goals of the path you
want navigation algorithm to send to Turtlebot.

4. Create a JSON file with the points for the algorithm to consume.

5. Run algorithm for Turtlebot navigation.

6. During the Navigation RFID antennas are detecting RFID tags places on goods in
the warehouse (in the simulation simulated RFID tags are produced).

7. While Turtlebot is navigating towards set goals, messages about current goal and
Turtlebot position are publish to ROS topic.

The created map of the simulated warehouse is presented in the next pictures

P.Ioakeimidis 75

Figure 26: PNG picture of the created map
representing the GAZEBO simulated warehouse

Figure 27: Simulated map from RVIZ at the moment
when robot completed the navigation, robot

returned to (0,0) position.

Integration of ROS, Turtlebot, RPLIDAR, RFID technologies and algorithm implementation for navigation and RFID tag detection in a warehouse.

In case that an obstacle appears in front of the Turtlebot it is automatically detected the
help of mounted lidar RPLIDAR A2, the created point cloud and the local planner who
computes a new path to over come the obstacle.

In case that an obstacle appears on top of the position which is the current goal sent to
Turtlebot, Turtlebot will stop moving and will wait until the obstacle is removed or until it the
waiting time or retry limit are reached and the goal is considered as not completed or
failed.

After completing or failing a goal a new goal is sent to the Turtlebot. After completing all of
the goals Turtlebot stops at the last sent goal in our case it is the position (0,0) as viewed
on the picture.

In the Figure 6 are presented the goals with black-yellow dots and the expected movement
that the Turtlebot will perform. This is the movement that we expect from Turtlebot when
we set this positions. Unfortunately because the path planners packages are already
implemented by ROS and we can modify only several parameters sometimes this
movement from one point to the next could be completely different. This can happen if an
obstacle appears in front to the robot. The only way to overcome this problem is to
implement a completely new path planner for navigation that will meet all the required
functionalities.

6.4. RFID Antennas activation and deactivation

As presented in the pictures of the Turtlebot movement in the warehouse the next
assumptions are obvious:

1. Turtlebot passes through the same position twice.

2. Turtlebot passes from position where no RFIDs exist.

3. Also we want the Turtlebot to perform RFID scan only when it is moving to specific
direction.(to determine the side where a specific RFID is detected).

This is the reason why antennas should be deactivated(paused) or activated(resumed) at
specific position. This can be performed through the command provided by the RFID
reader/module which is presented in the next chapters.

P.Ioakeimidis 76

Integration of ROS, Turtlebot, RPLIDAR, RFID technologies and algorithm implementation for navigation and RFID tag detection in a warehouse.

7. RFID Technology

77RFID technology exists for a quit long time, it exploits the electromagnetic fields to
identify and keep track of objects with attached special tags, Its origins date back to the
WWII. However only the last years it become widely used and covered many fields of our
society. Generally the fields where RFID tags could be used are Commerce , Retail,
Access Control, Advertising, Entertainment, Promotion tracking, Transportation and
Logistics, Passports, Infrastructure management and protection, Transportation payments,
Animal identification, Healthcare, Libraries, Museums, Schools and Universities, Sports
etc.

RFID uses electromagnetic fields, through this field the automatic identification and
tracking of the RFID tags attached to objects is possible. The main three parts of
composing this technology are RFID reader, RFID antennas, and RFID tags also some
kind of software is also needed. There are two different types of RFID tags the active and
passive RFID tags. The object that has attached on it a passive RFID tag is identified and
distinguished by the RFID tag's contents, these tags contain unique information written on
them. To collect the information from the passive RFID tags a RFID reader/antennas are
emitting radio waves(electromagnetic fields), RFID tags collect this emitted energy and
automatically produce responses. On the other hand active RFID tags periodically transmit
ID signals. Finally the main task of RFID readers/antennas is to emitting signals to the
tags and read the responses produced.

Also health issues and potential harm are important area and has to be considered as well
this work is not examining such issues and there are several reports about possible health
dangers78 79.

The Regulation and the standardizations of this technology is done by several
organizations which are the International Organization for Standardization(ISO), the
International Electrotechnical Commission (IEC), ASTM International, DASH 7 Alliance and
EPCgloabl.

80Reasons of choosing this technology:

1. Well known and publicly accessibly

2. Mature enough, it exists for quite a long time.

77 https://en.wikipedia.org/wiki/Radio-frequency_identification

78 https://www.rfidjournal.com/blogs/experts/entry?5001

79 https://www.inria.fr/en/centre/lille/news/is-rfid-dangerous?mediego_ruuid=7ca6c172-ec94-400d-8952-
5b272eec844d_1

80 http://morailogistics.com/9-facts-about-rfid-technology-in-logistics/, https://cybra.com/30-amazing-facts-
about-rfid-technology/, and https://rmsomega.com/the-top-5-reasons-for-using-rfid-in-the-warehouse/

P.Ioakeimidis 77

https://rmsomega.com/the-top-5-reasons-for-using-rfid-in-the-warehouse/
https://cybra.com/30-amazing-facts-about-rfid-technology/
https://cybra.com/30-amazing-facts-about-rfid-technology/
http://morailogistics.com/9-facts-about-rfid-technology-in-logistics/
https://www.inria.fr/en/centre/lille/news/is-rfid-dangerous?mediego_ruuid=7ca6c172-ec94-400d-8952-5b272eec844d_1
https://www.inria.fr/en/centre/lille/news/is-rfid-dangerous?mediego_ruuid=7ca6c172-ec94-400d-8952-5b272eec844d_1
https://www.rfidjournal.com/blogs/experts/entry?5001
https://en.wikipedia.org/wiki/Radio-frequency_identification

Integration of ROS, Turtlebot, RPLIDAR, RFID technologies and algorithm implementation for navigation and RFID tag detection in a warehouse.

3. Small size of RFID tags, attachable on any surface.

4. Fast bootstrap , doesn't require much time for learning

5. Holds a great market share which is continuously growing.

6. It is possible to use RFID tags in combination with barcode technology.

7. RFID technology is used in many applications world wide.

(a) Access cards, and wristbands with integrated RFID technology.

(b) RFID chip charged with money used in public transportation in big cities like
Hong Kong,New York, Singapore, Moscow and Rio de Janeiro.

(c) Vehicles/cars get benefited from RFID tags for quality control, and quality
assurance.

(d) Objects and products are identified and tracked by the tags when they are
transported from place to place etc.

(e) Animals tracking and identification

(f) Libraries with more than thirty million library items worldwide hold an RFID tag.

(g) Vatican is keeping track of more than 2 million ancient manuscripts

(h) Sports for tracking the athletes

(i) Waste tracking RFID to track for each household its waste

(j) etc.

81There are probably more technologies that could be used for the detection and recording
of warehouse objects. Technologies like Barcord(small distance, durability), NFC(small
distance, high price)82 or even Bluetooth(price) are all possible solutions. Although RFID
approach has proved its superiority for multiple reasons some of them are presented in the
previous paragraph. Other reason for choosing RFID technology are acceptability,
affordability, higher distance coverage, higher energy consumption, higher data rates,
durability etc.

7.1. RFID Antennas
83There are many types of Antennas which are used for different types of applications. In

81 https://nfc-forum.org/nfc-bluetooth-and-rfid-unraveling-the-wireless-connections/

82 https://blog.atlasrfidstore.com/rfid-vs-nfc

83 More technical information about these specific antennas could be found on the official website of
Kathrein https://www.kathrein-solutions.com/products/hardware/rfid- antennas/wide-range-70-antennas.

P.Ioakeimidis 78

https://www.kathrein-solutions.com/products/hardware/rfid-antennas/wide-range-70-antennas
https://www.kathrein-solutions.com/products/hardware/rfid-antennas/wide-range-70-antennas
https://blog.atlasrfidstore.com/rfid-vs-nfc
https://nfc-forum.org/nfc-bluetooth-and-rfid-unraveling-the-wireless-connections/

Integration of ROS, Turtlebot, RPLIDAR, RFID technologies and algorithm implementation for navigation and RFID tag detection in a warehouse.

our project we used a Wide Range UHF RFID Antennas 70 degrees 865 – 868MHz. (UHF
– Ultra High Frequency)

RFID antennas act as a transmitter and receiver. Antennas can operate only with the help
of RFID reader. Antennas at the same time can act both (a) as a signal transmitter and (b)
as a signal receiver. RFID Antennas transmit radio waves, after the emitted radio waves
are collected by passive tags, so passive tags immediately respond so Antennas an
receive the RFID tag signal. The main two different types of antennas are linear and
circular polarized antennas. The readers range also vary there are short-range (<=30cm)
and long-range antennas(>30cm). On long-range antennas the presence of
dielectrics(electrical insulators) between the reader and tags can have a negative effect on
the signal quality.

Finally although we are using circular polarized antennas there are also linear polarized
antennas out there and the right choice can have a great impact on the final results. The
main difference is that Linear polarized need predefined RFID tag orientation and the tag
must be fixed at the same level with the antenna. The range of linear antennas is bigger
that that of circular polarized antennas due to the concentration of the emission. On the
other side Circular polarized antennas, such the antennas that we are using in our project,
has emission of electromagnetic fields that look more like a corkscrew, so the
electromagnetic waves are covering two planes in opposed to one plane of linear
antennas. On each wavelength one complete revolution is performed. In our case since we
are not sure and we can't the RFID tag orientation the right choice are circular polarized

P.Ioakeimidis 79

Figure 28: Kathrein Wide Range 70 degrees Antennas, source:
https://www.kathrein-solutions.com/products/hardware/rfid-antennas/wide-range-

70-antennas

https://www.kathrein-solutions.com/products/hardware/rfid-antennas/wide-range-70-antennas
https://www.kathrein-solutions.com/products/hardware/rfid-antennas/wide-range-70-antennas

Integration of ROS, Turtlebot, RPLIDAR, RFID technologies and algorithm implementation for navigation and RFID tag detection in a warehouse.

antennas.

7.2. RFID Reader/Module
84 85RFID reader/antennas main task is to read tags positioned in the space. RFID readers
is like convert the electrical current into electromagnetic waves which are then transmitted
in the surrounding space where the tags collect the transmitted waves and use them as
energy by converting them back to electrical current.

There are several types of RFID reader (a) Passive Reader Active Tag (PRAT) system, (b)
Active Reader Passive Tag (ARPT) system, and (c) Active Reader Active Tag (ARAT)
system. In our case we use Active Reader Passive Tag (ARPT) system approach in this
case an active reader emits interrogator signals and then receives from the passive tags
the authentication responses.

7.3. MTI RFID Reader
86In this work MTI UHF RFID Reader/Module model RU-861-010 developed by
Microelectronics technology inc.87 was used. MTI Reader/Module is connected to computer

84 https://www.impinj.com/about-rfid/how-does-rfid-work/

85 https://en.wikipedia.org/wiki/Radio-frequency_identification

86 https://github.com/mti-rfid/RFID_Explorer/blob/master/MTI%20RU-824%20RFID%20Module
%20Command%20Reference%20Manual%20v3.3.pdf

87 http://www.mtigroup.com/upfiles/e_pro_tb01332508202.pdf

P.Ioakeimidis 80

Figure 29: MTI RFID RF Reader/Module,
source:

https://www.mtigroup.com/upfiles/e_pro_tb013
32508202.pdf

http://www.mtigroup.com/upfiles/e_pro_tb01332508202.pdf
https://github.com/mti-rfid/RFID_Explorer/blob/master/MTI%20RU-824%20RFID%20Module%20Command%20Reference%20Manual%20v3.3.pdf
https://github.com/mti-rfid/RFID_Explorer/blob/master/MTI%20RU-824%20RFID%20Module%20Command%20Reference%20Manual%20v3.3.pdf
https://www.mtigroup.com/upfiles/e_pro_tb01332508202.pdf
https://www.mtigroup.com/upfiles/e_pro_tb01332508202.pdf
https://en.wikipedia.org/wiki/Radio-frequency_identification
https://www.impinj.com/about-rfid/how-does-rfid-work/

Integration of ROS, Turtlebot, RPLIDAR, RFID technologies and algorithm implementation for navigation and RFID tag detection in a warehouse.

though USB interface and it is installed as a HID(Human Interface Device). The host
processor uses the USB VID and PID combination to find the MTI RFID reader/module.
The USB VID and PID numbers are both as follows: USB Vendor ID: 0x24E9 / Product
ID: 0x0824.

The configuration of the MTI RFID Reader/Module to make it operational could be
performed through the host. For the configuration of the MTI RFID Reader/Module a
application could be downloaded from the github 88 with a graphical interface for Windows,
also all the necessary documentation is included. The MTI RFID reader/module is
compatible with ISO 180006C for this reason a command set is provided for programming
commands. The following ISO 18000-C tag-protocol operations are reachable though the
provided command set: Inventory, Read, Write, Kill, Lock, Block Write, Block Erase.

The MTI Mac firmware provides report packets for presenting tag-protocol operation
response data to the host. The command set supports the configuration and control of the
individual antenna ports on the RFID reader/module. MTI Reader/module has the
capability to perform operation of read and write with two independent external antenna
ports. The maximum output is +30dBm for 300 power level and maximum range of
antennas is 12 meters. Also host has access to OEM configuration data area (store and
retrieve the specific hardware configuration and capabilities of the RFID reader/module) on
the RFID reader/module is provided by the command. Also low-level control of the RFID
reader/module's MAC firmware is supported by the command set. From the low-level
control it is possible to perform software reset operation, reseting the RFID reader/module
to a default idle state, pass to low power stand-by mode, and perform in-the field upgrade.

From the Command Set available generally the following operations can be performed:
RFID Reader/Module Configuration, Antenna Port Configuration, ISO 18000-6C Tag-Select
Operation, ISO 18000-6C Tag-Access Parameters, ISO 18000-6C Tag-Protocol Operation,
RFID Reader/Module Control Operation, RFID Reader/Module Firmware Access, and

88 https://github.com/mti-rfid/RFID_Explorer

P.Ioakeimidis 81

Figure 30: Typical MTI RFID Reader/Module Application Architecture, source: MTI RU-824 RFID
Reader/Module Command Reference Manual Version 3.3, https://github.com/mti-

rfid/RFID_Explorer/blob/master/MTI%20RU-824%20RFID%20Module%20Command%20Reference
%20Manual%20v3.3.pdf

https://github.com/mti-rfid/RFID_Explorer/blob/master/MTI%20RU-824%20RFID%20Module%20Command%20Reference%20Manual%20v3.3.pdf
https://github.com/mti-rfid/RFID_Explorer/blob/master/MTI%20RU-824%20RFID%20Module%20Command%20Reference%20Manual%20v3.3.pdf
https://github.com/mti-rfid/RFID_Explorer/blob/master/MTI%20RU-824%20RFID%20Module%20Command%20Reference%20Manual%20v3.3.pdf
https://github.com/mti-rfid/RFID_Explorer

Integration of ROS, Turtlebot, RPLIDAR, RFID technologies and algorithm implementation for navigation and RFID tag detection in a warehouse.

RFID Reader/Module Region Test Support. The command set consists of hexadecimal
values which are precisely described in the official manual of MTI Reader/Module. The
length of the command and response packets are fixed at 16 bytes length. There are 3
different formats of messages. The Command Packet Format, the Response Packet
Format and the Report Packet Format.

7.4. RFID Tags
89RFID Tags are Radio Frequency Identification Tags, specifically RFID tag is an electronic
tag which is used for assigning IDs for the identifications and tracking purposes. For the
operation of RFID tags radio frequencies are required. The architecture of the tags include
a chip used for precessing data, a memory module used for string the data and an antenna
for receiving/sending radio frequency waves. RFID tags can be of two different types they
can be active or passive. The active tags need an embedded power source to periodically
transmit its ID signal, in contrast passive tags operate without a power source by collecting
emitted energy from the RFID reader/antenna module. The passive tags to operate
normally need to be illuminated with a power level approximately 1000 times stronger than
than for the signal transmission. The active tags contain a memory module and have
longer range comparing to the passive tags which use all the electric current for the
transmission their ID number. The frequencies in which the RFID tags operate can be
different depending on the operation frequencies of the whole system which can be Ultra
high frequencies - UHF, High frequencies - HF or Low frequencies – LF. Also RFID tags
come in multiple forms which depend on the application where they are used. RFID tags
can take the almost any form most common forms are plastic card, thin sticker, or a small
chip, etc. that why RFID tags have unlimited possibilities and uses, they can be used in
almost every area for tracking and identification because of they variable forms and their
durability. Finally RFID tags are a superior way for identification compared to the barcode
technology but both technologies can be used together.

89 https://www.techopedia.com/definition/24273/radio-frequency-identification-tag-rfid-tag
https://internetofthingsagenda.techtarget.com/definition/RFID-tagging
https://en.wikipedia.org/wiki/Radio-frequency_identification#Tags
https://learn.sparkfun.com/tutorials/rfid-basics

P.Ioakeimidis 82

Figure 32: RFID tags used in the project Figure 31: Different types of RFID tags, source:
https://learn.sparkfun.com/tutorials/rfid-basics

https://learn.sparkfun.com/tutorials/rfid-basics
https://learn.sparkfun.com/tutorials/rfid-basics
https://en.wikipedia.org/wiki/Radio-frequency_identification#Tags
https://internetofthingsagenda.techtarget.com/definition/RFID-tagging
https://www.techopedia.com/definition/24273/radio-frequency-identification-tag-rfid-tag

Integration of ROS, Turtlebot, RPLIDAR, RFID technologies and algorithm implementation for navigation and RFID tag detection in a warehouse.

7.5. Configuration of RFID Antennas and Reader

Before mounting all the parts of the RFID technology (antennas, reader, and tags) on top
of Turtlebot it was important to examine the configuration of different parameters of RFID
reader like power levels, decibels, dwell time, and the number of inventory cycles. Also it
was necessary to examine different types of RFID tags in relation with the previous
parameters.

The trials of the MTI RFID reader we used can be performed on a Windows machine
though the MTI graphical interface which provides all the necessary tools for
experimentation to any user even a beginner with little knowledge about RFID technology.
Though this tools it is possible to play for example with the power level values (1/10dBm)
to select the proper power level for a specific application.

The main parameters that are available for configuration according the RFID antennas are:

1. Enabled/Disabled Status: Determines if an antenna post will be used for the tag-
protocol operations.

2. Power level(1/10dBm): This is antennas transmission Power in 1/10dBm
increments. It indicates the power supplied to the transmit antenna port when it is
being used.

3. Dwell Time: This value indicates the maximum number of milliseconds spent on
each logical antenna during a single cycle during a tag-protocol operation cycle.

4. Number of inventory cycles: This value indicates the maximum number of
inventory cycles are spent on a logical antenna before switching to the next
available antenna.

5. Physical Port: This value specifies the physical port to which the logical antenna is
bound for transmission of data.

6. Operation mode(Continuous or non continuous): Continuous options is for running
inventory continuously, and non-continuous option is for running a single inventory
cycle.

* Only one of dwell time and inventory cycles can be set to zero value at the same time.
Also dwell time, number of inventory rounds and the RF power are configured on a per-
antenna-port basis.

The main commands we are interested in are four:

1. Run inventory: Starts inventory and the rfid reader starts receiving tag values.

P.Ioakeimidis 83

Integration of ROS, Turtlebot, RPLIDAR, RFID technologies and algorithm implementation for navigation and RFID tag detection in a warehouse.

2. Stop: Stops permanently the inventory.

3. Pause: Pause the inventory until the resume command is sent.

4. Resume: Resumes the inventory if previously inventory was paused.

Also post singulation criteria and selection criteria could be specified but this options where
not examined in this work because we are interested in receiving all possible tags without
making any distinction, at least at this point. After the tags being collected it is possible to
process them in any way we desire. Generally speaking RFID reader has many different
available functionalities that someone can take advantage of. Other available
configurations are “Select Criteria”, “Algorithm”, “Post Singulation”, “GPIO Pins”, etc.

Another Tool of MTI application is “RF Test”, it is useful for experimentation and for
choosing the right values because through its panel it is possible to change the Power
levels and select the most convenient for a specific use case. In our specific case this tool
helped for choose the proper Power value in relation to the distance of the antenna from
the RFID tag.

7.6. Measurements performed with RFID Antennas and Reader

The following table present several approximate measurements performed for selecting
the desired Power Level values. The Power values tested were 100 – 10dBm, 150 – 15
dBm, 200 – 20 dBm, 250 – 25 dBm, and 300 – 30 dBm. For the measurements where
used only passive RFID tags, and specifically a plastic card, a soft sticker square shaped,
and a soft sticker long rectangle shaped. Next is presented a table with the approximate
gotten values. This measurements were performed for the selection of the Power Level
value for our specific experiment which is performed in a warehouse environment where
Turtlebot is moving in the middle of a corridor , between of the warehouse shelves. In our
case the corridor wasn't wider than 2/2.5 meters. A general rule is that larger RFID tags
have better read range than smaller RFID tags that have shorter read range.

Table 2: Measurements for RFID tag detection with different type of RFID cards and different Power
Levels

Power Levels Plastic card Square sticker Rectangle sticker

100 - 10dBm 0 ~ +-1m 0 ~ +-0.7m 0 ~ +-0.5m

150 - 15dBm 0 ~ +-1.5m 0 ~ +-1/1.2m 0 ~ +-1/1.2m

200 - 20dBm 0 ~ +-2-2.3m 0 ~ +-1.2/1.5m 0 ~ +-1.2/1.5m

250 - 25dBm 0 ~ +-2.5m 0 ~ +-2m 0 ~ +-1.5/2m

300 - 30dBm 0 ~ +-4/4.5m 0 ~ +-3.5/4m 0 ~ +-3.5m

We are not interested in hundred percent precision from this measurements what we want
is approximately to check the distances in contrast with the Power Level values and the

P.Ioakeimidis 84

Integration of ROS, Turtlebot, RPLIDAR, RFID technologies and algorithm implementation for navigation and RFID tag detection in a warehouse.

different Types of RFID tags we had at our disposal.

The right choice of the Power Levels is important for four main reasons:

1. Generally not loosing any RFID tags located around RFID antennas from both sides
of the warehouse corridor shelves.

2. Avoid receiving RFID tags from alongside corridors to the corridor the Turtlebot is
moving.

3. Receiving RFID tags if Turtlebot try to avoid and obstacle and moves not in the
middle of the corridor but close to one of its sides.

4. Reduce the power consumption since RFID reader and antennas use power from a
mobile device (laptop).

5. Avoiding emission of unnecessary radio frequency waves to the environment.

From the previous table as it is obvious the higher the Power levels the better the coverage
of the RFID antennas. The higher the Power Level is set as it is expected the rates of RFID
tags was higher. Also as it is obvious the hard plastic RFID tags had better results from the
small sticker tags. Finally the experiment was performed at a corridor of approximate width
of 2.5 meters the preferred choices were the Power Levels of 200 – 20dBm and 250 –
25dBm.

There are many factors that influence the reading distance and the quality of the RFID
tags. Such factors are the materials, the position and the orientation of the RFID tags, the
angles of the antennas, antenna polarization and other reader configurations.

7.7. Integrating RFID Technology with Turtlebot 2

An algorithm implemented in Python is used for configuring, running basic commands and
running inventory is used. This python program is used for the communication with MTI
RFID reader/module and the RFID tags collection. During the collection the RFID tags the
data collected is saved or published with the help of ROS topics. Apache Kafka, ROS
logging and simple file explained in next chapters. Also the fact that python is used makes
it a lot easier for integrating with ROS since ROS supports python.

7.8. Mounting RFID Antennas on top of TurtleBot

RFID Antennas have to be mounted on top of Turtlebot. Both will be mounted on top panel
of Turtlebot one on the right side for scanning the right side of the corridor and the other on
the left side for scanning the left side of the corridor. Because Wide Range 70 degrees
antennas are used they should and the robot is to close to the ground the antennas are
mounted with a slit angle as shown in the picture. For exact angles and position of each
antenna separate experimentation has to be performed considering different factors like

P.Ioakeimidis 85

Integration of ROS, Turtlebot, RPLIDAR, RFID technologies and algorithm implementation for navigation and RFID tag detection in a warehouse.

how high and how far the goods are stored from the Turtlebots antennas. The angle of
Antennas is not a big problem (and it is easily adjustable) since we are using circular
polarized antennas the plane and orientation of RFID tags in relation with the RFID
reader/antennas doesn't affect the detection rate.

7.9. Other issues related to RFID technology - Problems and concerns about RFID

Fore implementation of a commercial system several more issues should be studied, and a
more precise research and experimentation need to be performed about RFID technology.

 7.9.1 Materials interference with RFID technology

90There are materials that reduce the RFID tag detectability by absorbing the emitted RF
energy. In a warehouse this could be an serious issue for example if for example bottles of
water(containers of liquids) are stacked next to each other it can lead to RF energy
absorption and to low rate RFID tags detection. Any objects with high RF energy
absorption level will reduce the emitted energy reducing the energy reached to the passive
RFID tag and also the RFID antennas can be affected in a bad way.

1. Objects containing high amount of water: such objects will reduce the RF energy
in the UHF (Ultra high frequency) by absorbing the RF energy. This will make it
harder to read the UHF RFID tags that are behind such objects.

2. Liquids: Liquids generally are good RF energy absorbers. This can lead to non
detected RFID tags. When scanning RFID tags that where behind a human body or
a tank of water were not detected. Higher power lever could possible solve this
problem. Also sometimes due to signal reflection these RFID tags where detected
by the RFID module.

3. Carbon is another element thats absorbs UHF energy. In case that the boxes are
covered in carbon it can possibly lead to bad RFID tag detectability.

4. Any material interfering with RF UHF can cause unexpected results to the
performed experiments if not studied. Such material can interfere, block, absorb, or
reflect the RF waves.

5. Other competitive frequencies(radio waves).

To overcome this problems tests have to be performed, the arrangement of the object

90
- http://www.rfidjournal.com/blogs/experts/entry?10691

- https://en.wikipedia.org/wiki/Electromagnetic_absorbers
- https://www.quora.com/What-materials-block-or-refract-radio-waves
- https://blog.atlasrfidstore.com/improve-rfid-read-range
- paper : http://www.av.it.pt/conftele2009/Papers/55.pdf
- paper - https://www.pmmi.org/sites/default/files/Proposed-Guidelines-for-the-Use-of-passive-RFID-
Transponders.pdf

P.Ioakeimidis 86

https://www.pmmi.org/sites/default/files/Proposed-Guidelines-for-the-Use-of-passive-RFID-Transponders.pdf
https://www.pmmi.org/sites/default/files/Proposed-Guidelines-for-the-Use-of-passive-RFID-Transponders.pdf
http://www.av.it.pt/conftele2009/Papers/55.pdf
https://blog.atlasrfidstore.com/improve-rfid-read-range
https://www.quora.com/What-materials-block-or-refract-radio-waves
https://en.wikipedia.org/wiki/Electromagnetic_absorbers
http://www.rfidjournal.com/blogs/experts/entry?10691

Integration of ROS, Turtlebot, RPLIDAR, RFID technologies and algorithm implementation for navigation and RFID tag detection in a warehouse.

should be studied for lowest RF energy absorption amounts. Another approach is by
isolating the RFID tags from the RF absorbers by inserting another material between them
like metal foil or plastic RFID tags covered in metal. Also a solution are reflective surfaces.
All these cases should be studied in case of implementation of a industrial product.

 7.9.2 Multiple interposed object with RFID tags

Imagine a scenario where RFID tags are position on top of boxes in a warehouse and for
some reasons there are three boxes each with its own RFID tag. This boxes are interfering
with the RF signal and the power of the signal is reduced.

As shown in the previous picture we have 2 boxes with RFID tags located on top of them.
Also an RFID tag is placed in front of the boxes.

• RFID tag #1 (1m distance): This is the first RFID are no objects blocking the signal

of RF Antenna. This RFID tag is always detected because it is close enough and no
objects absorb the signal power from antenna.

• RFID tag #2 : As presented on the picture this RFID tag is placed on the left side of

the right object, so the RFID tag is located between the two objects. In this case
different behaviors were observed depending on the power of the signal, the
distance and the reflection. In our case this RFID tag wasn't detected always
because the signal was blocked by the right object and due to the close distance
from the left object no reflection was possible. To overcome this problem this RFID
tag could be placed on the other side(right side) of object or on top of the object (top
side).

P.Ioakeimidis 87

Figure 33: RFID tags placed between the objects of a
warehouse, 1,2, and 3 are RFID tags.

Integration of ROS, Turtlebot, RPLIDAR, RFID technologies and algorithm implementation for navigation and RFID tag detection in a warehouse.

• RFID tag #3 : This RFID tag is visible to the RFID Antenna and it is detected as

expected. Because of the reflection from the surrounding surfaces like walls etc. this
RFID tag is detected normally. Although this RFID tag is detected it could be also
placed on top of the object.

 7.9.3 Interference of RFID reader/antennas on multiple autonomous robots

In the future work if it is planned to use more than one robots scanning on multiple
corridors of a warehouse for products it is important to make a more precise research
according the power levels , dBm and other parameters at which antennas are emitting.
Although this is not considered as a problem since the detection of an RFID tag from one
antennas doesn't exclude the detection of the same RFID tag from a another antenna.

 7.9.4 Plane and orientation of RFID tags in relation with the RFID reader/antennas

Although in our case after experimentation we didn't have any issues with different
orientations and planes because we are using circular polarized antennas it should be
carefully chosen what type of antennas will be used Linear of Circular polarized antennas.
Linear polarized antennas need a predefined orientation of the RFID tags and also the
RFID and the antennas has to be placed at the same plane.

 7.9.5 Optimal Antenna and Reader Selection

There are unlimited option for selecting the perfect RFID antenna for a specific application.
One of such parameters was in our case is the circular polarization of the antenna.
Another parameter is the frequency that the antenna emits there are LF, HF, and UHF.

 7.9.6 Privacy – Security

91There are concerns according of the RFID tags security recently raised. For example
unauthorized reading of RFID tags can be a risk to RFID privacy. Also RFID tags can be
vulnerable to different types of “attacks” thats why techniques and protocols for making the
RFID tags more secure should be applied. This problems are not studied in this work.

 7.9.7 RFID Health concerns

92As with all technologies emitting electromagnetic waves and radio frequencies, RFID
technology they can have possibly some impact on the exposed human whose body
absorbs RF energy, so precautions should be taken like the distance of antennas from the
researcher during the test. This subject is not part of this work and should be studied

91 https://en.wikipedia.org/wiki/Radio-frequency_identification

92 https://www.inria.fr/en/centre/lille/news/is-rfid-dangerous?mediego_ruuid=645197fd-2389-4d6d-8ef4-
af5f14059c42_0

https://www.researchgate.net/publication/224328848_Impacts_of_RF_radiation_on_the_human_body_in_a_
passive_RFID_environment
http://www.rfidjournal.com/site/faqs#Anchor-Are-63368

P.Ioakeimidis 88

http://www.rfidjournal.com/site/faqs#Anchor-Are-63368
https://www.researchgate.net/publication/224328848_Impacts_of_RF_radiation_on_the_human_body_in_a_passive_RFID_environment
https://www.researchgate.net/publication/224328848_Impacts_of_RF_radiation_on_the_human_body_in_a_passive_RFID_environment
https://www.inria.fr/en/centre/lille/news/is-rfid-dangerous?mediego_ruuid=645197fd-2389-4d6d-8ef4-af5f14059c42_0
https://www.inria.fr/en/centre/lille/news/is-rfid-dangerous?mediego_ruuid=645197fd-2389-4d6d-8ef4-af5f14059c42_0
https://en.wikipedia.org/wiki/Radio-frequency_identification

Integration of ROS, Turtlebot, RPLIDAR, RFID technologies and algorithm implementation for navigation and RFID tag detection in a warehouse.

further. There are many other studies already performed that can enlighten all the
concerns according the possible health impact.

P.Ioakeimidis 89

Integration of ROS, Turtlebot, RPLIDAR, RFID technologies and algorithm implementation for navigation and RFID tag detection in a warehouse.

8. LIDAR Technology

93LIDAR is an acronym for Light Detection and Ranging. LIDAR is a surveying method that
uses a pulsed light laser in combination with a sensor that measures the reflected pulses
of light to compute the distances to the scanned surface. The purpose of LIDAR is to map
the environment that it scans. The scanned surface differs according to the application
where LIDAR is used. It can be room's walls or obstacles, Earth's surface, forest or the
bottom of an ocean. The range/distance data collected also has to be combined with other
data like position, orientation, GPS, scan angles, and calibration data to get the final result.
The combination of all the data collected LIDAR reconstructs and generates a
representation of the environment scanned, this representation could vary from 2D to 3D.
The image produced by LIDAR is a precise point cloud. This point cloud is a group of
elevation points of high precision. LIDARS can be used from ground, air of even space.

LIDAR systems use different types of wavelengths depending on the type of the target
surface it is scanning. The wavelength vary from 10micrometers to 250nm(UV). LIDAR
usually are consisted of a Laser, a Scanner, and a Navigation system.

Finally LIDAR has many uses some of them are commonly known like high-resolution
maps and autonomous cars which are quit popular lately. LIDAR has two types of
applications which are airborne and terrestrial which are applied in practice in many areas
like Agriculture, Archeology, Geography, Forestry, Transportation, Autonomous vehicles,
Geology, Robotics, etc.

8.1. RPLIDAR A2
94In this master thesis Laser Range Scanner RPLIDAR A295 is used which is a Lidar similar
to what was explained in previous chapter. RPLIDAR is an affordable comparing with other
systems 2D LIDAR solution. The team that developed RPLIDAR is called RoboPeak Team,
SlamTec company. RPLIDAR produce output which is suitable for map building, slam and
3D object/environment model construction. The output generated by RPLIDAR is
appropriate for creating maps, performing slam, and building 3D models. Next are listed
some of RPLIDAR A2 general specifications96 97 98:
93 https://en.wikipedia.org/wiki/Lidar
https://oceanservice.noaa.gov/facts/lidar
https://www.youtube.com/watch?v=EYbhNSUnIdU

94
http://bucket.download.slamtec.com/a7a9b856b9f8e57aad717da50a2878d5d021e85f/LM2 04_SLA MTEC_rpl
idarkit_usermanual_A2M4_v1.1_en.pdf

95 Official RPLIDAR website: http://www.slamtec.com/en.

96 Measurement Performance of RPLIDAR for Typical values : http://www.slamtec.com/en/Lidar/A2Spec

97 http://www.slamtec.com/en/Lidar/A2

98 https://www.robotshop.com/community/blog/show/unboxing-rplidar-a2-360deg-laser-scanner

P.Ioakeimidis 90

https://www.robotshop.com/community/blog/show/unboxing-rplidar-a2-360deg-laser-scanner
http://www.slamtec.com/en/Lidar/A2
http://www.slamtec.com/en/Lidar/A2Spec
http://www.slamtec.com/en
http://bucket.download.slamtec.com/a7a9b856b9f8e57aad717da50a2878d5d021e85f/LM204_SLAMTEC_rplidarkit_usermanual_A2M4_v1.1_en.pdf
http://bucket.download.slamtec.com/a7a9b856b9f8e57aad717da50a2878d5d021e85f/LM204_SLAMTEC_rplidarkit_usermanual_A2M4_v1.1_en.pdf
http://bucket.download.slamtec.com/a7a9b856b9f8e57aad717da50a2878d5d021e85f/LM204_SLAMTEC_rplidarkit_usermanual_A2M4_v1.1_en.pdf
http://bucket.download.slamtec.com/a7a9b856b9f8e57aad717da50a2878d5d021e85f/LM204_SLAMTEC_rplidarkit_usermanual_A2M4_v1.1_en.pdf
https://www.youtube.com/watch?v=EYbhNSUnIdU
https://oceanservice.noaa.gov/facts/lidar
https://en.wikipedia.org/wiki/Lidar

Integration of ROS, Turtlebot, RPLIDAR, RFID technologies and algorithm implementation for navigation and RFID tag detection in a warehouse.

• Range radius: 0.14m - 12m/18m (6 meters on other sources)

• Ultra thin: 4cm

• Sample rate: 2000-8000 times (measurement frequency) (typical - 4000)

• Scan Rate: 5 – 15Hz (scan frequency) (typical 10Hz)

• Angular resolution: 0.45 – 1.35 (typical 0.9)

• Work of years: 5

• Low noise brushless motor

• Wireless power, and optical communication technology.

• Light Source: Low power infrared laser light.

• Laser Safety Standard: Class 1 (safety to human and pets)

• Laser triangulation ranging principle, and high-speed RPVision range engine

measures distance data 8000 times per second and has excellent performance in a
long distance.

• It performs clockwise 360 degree omnidirectional laser range scan.

• ROS packages “rplicar_ros and rplicar_python” are available for RPLIDAR A2.

8.2. RPLIDAR versus Kinect
99Kinect sensor is the default 3D sensor that comes with the included hardware of the
Turtlebot robot. Although both sensors use infrared light the way this two sensors work is
https://www.roscomponents.com/en/lidar-laser-scanner/155-rplidar-a2.html

P.Ioakeimidis 91

Figure 35: Room scanned with RPLIDAR A2 mounted
on top of Turtlebot represented in RVIZ toolFigure 34: RPLIDAR A2

https://www.roscomponents.com/en/lidar-laser-scanner/155-rplidar-a2.html

Integration of ROS, Turtlebot, RPLIDAR, RFID technologies and algorithm implementation for navigation and RFID tag detection in a warehouse.

different. Kinect doesn't contain any mechanical parts except of a tilt motor so the
movement it performs is totally dependent of the robot's movement, on the other side
RPLIDAR spins 360 degrees around itself with the help of a brushless motor and can
reach 8000 sample rate. This rotation of the RPLIDAR is important because it eliminates
the need of the robot to perform the “recovery rotation” for clearing the space around it.
The fact that RPLIDAR performs this rotation gives to us much more data about the
surrounding environment since it collects data from all possible directions. For the Kinect to
produce the same result robot has to perform a full rotation. Also as described in RPLIDAR
characteristics the range radius of the RPLIDAR is much higher approximately 14 meters
comparing to Kinect's range of 4 meters.

Specifically in our case the “recovery rotation” and generally the rotations performed by the
Turtlebot when Kinect is being used can spoil the results of the RFID Antennas mounted
on top of it. This happens because sometimes Turtlebot has to perform “recovery rotation”
to clear the space or estimate it's position in the world. Each RFID antennas has to collect
RFID tags data only from one side of the corridor to avoid mixing data about each RFID
tag's side and produce accurate data about the side of the corridor on which each RFID
tag is located. This is possible with the help of RPLIDAR because by performing a
clockwise 360 degree omnidirectional laser range scan it eliminates the need for “recovery
rotation”.

Finally except from previously described reasons why RPLIDAR is chosen, both sensors
RPLIDAR and Kinect produce similar results not taking in account the areas that are not
visible by the Kinect. Also as it is expected due to its superior characteristics RPLIDAR has
higher overall results compared to Kinect's. The negative aspect about RPLIDAR is the set
up and mounting of the sensor compared to Kinect's out of the box functionality. However
all the necessary ROS packages for ROS – RPLIDAR interoperability are available.

Finally it is probably possible to use both technologies for even better result. Kinect sensor
could be located closer to the ground and detect obstacles in front of the Turtlebot, while
the RPLIDAR sensor could be placed on higher position scanning the area around the
Turtlebot providing a more precise and accurate data, and at the same time preventing
Turtlebot from unnecessary rotations.

99 Kinect https://msdn.microsoft.com/en-us/library/jj131033.aspx

https://msdn.microsoft.com/en-us/library/hh438998.aspx

P.Ioakeimidis 92

https://msdn.microsoft.com/en-us/library/hh438998.aspx
https://msdn.microsoft.com/en-us/library/jj131033.aspx

Integration of ROS, Turtlebot, RPLIDAR, RFID technologies and algorithm implementation for navigation and RFID tag detection in a warehouse.

8.3. Integrating RPLIDAR A2 with Turtlebot 2

Generally speaking the procedure of integrating RPLIDAR A2 with Turtlebot 2 is pretty
straight forward. As already described ROS is organized in packages which which main
aim is to provide necessary functionality simple as possible out of the box approach.
Fortunately a research and development team called RoboPeck founded in 2009 has
taken care of this issue by providing as with the implementation of the RPLIDAR ROS
package. The RPLIDAR package is available both by downloading it from the “robopeak”
github 100 and building it in a catkin workspace, or by installing it directly from the package
repository by running the “sudo apt-get install <package_name>” command in the terminal.
RPLIDAR packages support Hydro, Indigo, Jade and Kinetic ROS distributions.

After completing the package installation the next important step is the selection of the
appropriate position on to of Turtlebot. There are many different position of possible
RPLIDAR on top of Turtlebot. Next are described different possible mounting position.

1. Mounting RPLIDAR directly on top plate of Turtlebot. This is a peaty straight forward
approach. This position is not bad in case that there are not other devices mounted
on Turtlebot's top plate.

100 https://github.com/robopeak/rplidar_ros

P.Ioakeimidis 93

Figure 36: RPLIDAR is
mounted on the top plate of
Turtlebot, Kinect is located

under Rplidar.

Figure 37: Closer look of
RPLIDAR and Kinect mounted

on Turtlebot

https://github.com/robopeak/rplidar_ros

Integration of ROS, Turtlebot, RPLIDAR, RFID technologies and algorithm implementation for navigation and RFID tag detection in a warehouse.

2. The second possible position for mounting RPLIDAR is again relative to Turtlebot's
top plate but in this case mounting RPLIDAR exactly under top pate turned exactly
180 degrees around y axes. In this case RPLIDAR is positioned upside down
mounted on top plate with its bottom side, exactly above the Kinect sensor. This
approach after tests performed appeared to be reliable and the results were
satisfying. The map produced with RPLIDAR mounted in this position was accurate.
The reasons why this approach is attractive are first of all because there are no
other devices mounted around RPLIDAR preventing it from scanning successfully
the surrounding area and at the same time because it is positioned somewhere in
the middle not close but at the same time not far from the ground, approximately at
the same level with Kinect.

P.Ioakeimidis 94

Figure 38: RPLidar mounted on top of the
top plate of Turtlebot

Figure 39: Close view of
RPLidar mounted on top of the

top plate of Turtlebot

Figure 40: RPLIDAR mounted on under
the top plate of Turtlebot

Integration of ROS, Turtlebot, RPLIDAR, RFID technologies and algorithm implementation for navigation and RFID tag detection in a warehouse.

3. Another possible position for mounting RPLIDAR on top of Turtlebot was again
above the Turtlebot's top plate, but also above the RFID antennas placed also on
the top plate of Turtlebot. This is position is being examined because first of all we
don't want to cover any side of RPLIDAR and prevent it from loosing data of the
surrounding area, but also what we want is to mount RPLIDAR as close as possible
to the ground to locate all the obstacles of any sizes which possible could block
TurtleBot smooth movement.

4. Finally RPLIDAR could be placed on top of middle plate or on top of bottom plate.
Both of these approaches are attractive because the RPLIDAR is places
somewhere in the middle of Turtlebot, so it is covering both larger and smaller
object as much as possible.

In a project presented online with a previous model of RPLIDAR A1 it is mounted
approximately as we describe in the second approach, they place it under the top plate
above the Kinect sensor and the results they presented were quit promising.

Regardless of the approach chosen there two are the main things to consider when
mounting any RPLIDAR like sensors on top of Turtlebot.

1. First of all the spinning RPLIDAR should not be covered from any side with other
possibly mounted devices on top of Turtlebot. In case where even a small device is
mounted somewhere around RPLIDAR, it preventing the the laser from scan and
sensor to receive effectively and the produced result will be defective.

2. The distance from the ground or in other words the displacement of RPLIDAR on y-
axes (also on x-axes and z-axes). Mounting RPLIDAR close to the ground will
probably prevent it from detecting higher objects like chairs, while mounting
RPLIDAR to high above the ground will prevent it from detecting smaller objects like
bags or smaller boxes.

After mounting RPLIDAR at the desired position on top of Turtlebot we still need to perform
several adjustments to get the desired result. As explained in previous chapters when a
sensor is mounted on top of the Turtlebot or any other robot we need to define a
transformation to keep the relationship between coordinate frames at any point in time, in
this specific case we have to define a “tf” of type “static transform publisher”. By defining
this transformation the exact position of the RPLIDAR sensor relative to its parent plate
which is the top plate link, ROS will always know where exactly RPLIDAR is placed in the
space relative to the top plate and implicitly to the base link of the robot. In simple words by
making this configuration of the “tf” transform will produce a translation offset that makes a
relation between the “base link” and the RPLIDAR laser sensor. By adding this
transformation we know where the RPLIDAR is placed in relation to the world frame, what
is the pose of the RPLIDAR relative to the base link, and what is the current pose of the

P.Ioakeimidis 95

Integration of ROS, Turtlebot, RPLIDAR, RFID technologies and algorithm implementation for navigation and RFID tag detection in a warehouse.

base frame in the map frame.

In all cases the RPLIDAR was mounted approximately in the middle of Turtlebot plates. For
example the following displacements are x = 0.015, y = 0.00, and z = -0.01 which are
relative to the top plate for the second case examined where RPLIDAR is mounted upside
down on the top plate. For the same case the angular displacement in radians was
quaternion_x = 0, quaternion_y = 3.14159265, and quaternion_z = 0. This information is
passed to Turtlebot's launch file as a “tf” transform of type “static_transform_publisher”,
also in this transform is important to specify the parent link which is the plate
“/plate_top_link” and child link RPLIDAR which is “/laser”

It looks like: <node pkg="tf" type="static_transform_publisher" name="laser" args="0.015
0.00 -0.01 0 3.14159265 0 /plate_top_link /laser 50"/>

8.4. Problems Detected RPLIDAR

Data from RPLIDAR is taken under consideration by Turtlebot only when it is moving, in
other case when Turtlebot is static data from RPLIDAR is not received by Turtlebot,
although RPLIDAR is spinning normally and collecting data about. This has multiple
implications, for example when Turtlebot is stationary and a object falls from a shelve in
front of it or when a person passes by, neither the box or the person are detected. This
behavior can be observed with RVIZ. But since Turtlebot is always on the move this is a

P.Ioakeimidis 96

Figure 41: RPLIDAR is mounted under its parent plate "top
plate" and turned 180 degrees y-axes

Integration of ROS, Turtlebot, RPLIDAR, RFID technologies and algorithm implementation for navigation and RFID tag detection in a warehouse.

minor problem, also we are interested about the object mostly when Turtlebot is moving to
avoid collisions.

RPLIDAR is not detecting small object located on the ground. For example a lying cable
that is several centimeters high is not detected. So Turtlebot will try to move towards that
direction and only when it's movement is interrupted by this object Turtlebot will stop.

P.Ioakeimidis 97

Integration of ROS, Turtlebot, RPLIDAR, RFID technologies and algorithm implementation for navigation and RFID tag detection in a warehouse.

9. EDL

As already presented in previous work section, EDL stands for Experiment Description
Language. EDL is a DSL - Domain Specific Language and it was developed as a main
component of RAWFIE system which stands for Road-, Air- and Water-based Future
Internet Experimentation. EDL provides as with terminology for defining experiments for
mobile IoT in our case a robot called Turtlebot 2. EDL is simple and it is similar to XML or
legacy programming languages. With the help of EDL we create a mission for our Turtlebot
with the path of positions – goals which our robot Turtlebot has to follow. The created
mission is in JSON file which includes a list of “waypoints” which represents the path of
positions(goals) of an indoor environment which Turtlebot has to follow.

To create the JSON file with EDL we have to first create a map of the required area, where
the robot will navigate. The procedure for map creation with mounted Lidar or Kinect
sensors is presented in a previous chapter, as well as in the appendix. The output of the
map creation are two files a YAML and a PGM which are used for the navigation and the
mission creation for the Turtlebot. Also before creating a JSON file of “waypoints” it could
be useful with the help the RVIZ tool to navigate with Turtlebot through the created map to
verify the path it should follow. Finally we can use the graphical interface or the editor
described in the EDL paper already presented to produce the JSON file of mission
“waypoints”.

P.Ioakeimidis 98

Figure 42: Here is presented the EDL Web Editors, left side is the json editor and on the right
side is the graphical map with the waypoints

Integration of ROS, Turtlebot, RPLIDAR, RFID technologies and algorithm implementation for navigation and RFID tag detection in a warehouse.

In this picture we can observe the editor on the left for the EDL and the graphical interface
on the right side. The map of our simulated indoor environment appears in the graphical
interface which was produced by scanning the simulated environment with the Turtlebot's
simulated laser. Exactly the same result is produced with the physical Turtlebot or any
other robot in real environment.

The created file of “waypoints” can be replaced by a custom made JSON file with positions
and angles. The only thing that will change is how the program parse the JSON or any
other file since the structure will be different.

P.Ioakeimidis 99

Figure 45: EDL JSON File

Figure 43: Simle Text FileFigure 44: Custom JSON
File

Integration of ROS, Turtlebot, RPLIDAR, RFID technologies and algorithm implementation for navigation and RFID tag detection in a warehouse.

10. Apache Kafka

Apache Kafka101 is an open source software meant for building streaming and processing
applications developed in Scala and Java by Apache Software Foundation, although it was
originally developed by LinkedIn. Apache is a distributed system with the capability to
manage trillions of events per day. It is based on a distributed commit log and it provides
the functionality of subscribing and publishing enormous amount of data to multiple
systems and applications in real time. Apache Kafka can handle enormous number of
messages and perform real-time stream processing on the messages. The three main
functionalities Apache Kafka provides are Publish & Subscribe streams, Process streams,
and Store streams. The main characteristics of Kafka are the fact that it is distributed, it
can scale horizontally, it is fault tolerant, and as it is obvious in the next paragraph it used
in production for many companies

102Apache Kafka is widely accepted use cases of Kafka are Messaging and Website
Activity Tracking, Log Aggregation, Stream Processing, Event Sourcing and Commit Log.
103These use cases are used by thousands companies as airbnb, LinkedIn, Netflix, Uber,
Twitter, Cloudflare, Mozilla, Yahoo, Coursera, Oracle, etc. and the list can continue for at
least two paragraphs since thousands of companies use Kafka. So it is obvious that there
is something attractive in Apache Kafka that makes it quite a popular tool among all these
well known companies that develop industrial applications.

10.1. Why Apache Kafka

In this master thesis “Publish & Subscribe” part of Apache Kafka here are presented
several reasons why Apache Kafka is preferred to other possible solutions104.

1. Open-Source

2. Free

3. Used by industrial applications

4. Scalable

5. Fault tolerant (distribution & replication)

101 https://www.confluent.io/what-is-apache-kafka/

https://en.wikipedia.org/wiki/Apache_Kafka

https://kafka.apache.org/

102 https://kafka.apache.org/uses

103 https://cwiki.apache.org/confluence/display/KAFKA/Powered+By

104 https://techbeacon.com/what-apache-kafka-why-it-so-popular-should-you-use-it,

P.Ioakeimidis 100

https://techbeacon.com/what-apache-kafka-why-it-so-popular-should-you-use-it
https://cwiki.apache.org/confluence/display/KAFKA/Powered+By
https://kafka.apache.org/uses
https://kafka.apache.org/
https://en.wikipedia.org/wiki/Apache_Kafka
https://www.confluent.io/what-is-apache-kafka/

Integration of ROS, Turtlebot, RPLIDAR, RFID technologies and algorithm implementation for navigation and RFID tag detection in a warehouse.

6. Publish – Subscribe messaging system

7. StackOverflow, Google, and Kafka GitHub Apache Kafka related question has
grown up exponentially

10.2. Apache Kafka for RFID tags publishing

RFID antennas are recording RFID tags while moving in a warehouse. The collection of
RFID tag data is done with an already implemented algorithm with minor changes from105

E-Pres paper presented in the beginning of this thesis. All these data has to be somehow
published to the interested parties. This task is performed by Apache Kafka Publisher.
When a new RFID tag is detected it is published to a topic by Apache Kafka publisher if
the RFID tag detected regardless if this RFID tag is duplicate or not. Data published to a
predefined topic is later consumed by consumers who have subscribed to the published
topic. So we create a producer consumer like architecture. Moving deeper into Apache
Kafka isn't the target of this work so default apache configurations are implemented. For a
more detailed configuration more Kafka components need to be configured: topics, topics
partitions, partition offset, replicas of partition, brokers, Kafka cluster, leader node, follower
node, etc.

> producer = KafkaProducer(bootstrap_servers=bootstrap_servers)

…

> producer.send(self.topic, value=bytes(content), timestamp_ms=timestamp_ms)

In the previous lines Apache Kafka Publisher's basic use case is presented written in
Python programming language.

105 https://github.com/donMichaelL/reader_MTI_RU_861_010 & https://github.com/donMichaelL/e-pres

P.Ioakeimidis 101

https://github.com/donMichaelL/e-pres
https://github.com/donMichaelL/reader_MTI_RU_861_010

Integration of ROS, Turtlebot, RPLIDAR, RFID technologies and algorithm implementation for navigation and RFID tag detection in a warehouse.

11. RFID TAG – POSITION – PATH – DATA COLLECTED

In this chapter are explained the data that we are interested in collecting. While the robot is
moving, two main types of data are produced, for the data handling are used simple data
structures.

1. Turtlebot's navigation data

a) Current Position of the TurtleBot

b) The Current Goal Turtlebot is traversing

1. Start position

2. End position

2. RFID tag data

a) RFID value

b) Antenna (0 or 1) located the current RFID

c) RSSI value

The RFID data is produced on the side of RFID algorithm and the data about the position
and goals is produced on the side of the ROS. The RFID data collection is performed with
the MTI RFID RF module with minor changes performed on an already implemented
algorithm106. The problem here is the combination of both RFID data and Odometry(pose)
data. Both has to be located inside of a ROS catkin workspace. Also although it is possible
to implement ROS programs in both C++ or Python it is easier to use the same language
for both ROS and RFID tags detection. Here is presented the part implemented in this
work for data handling.

11.1. Publishing RFID Tags on top of Apache Kafka publisher

The first mechanism for transmitting in real time the collected RFID tags is Apache Kafka
publisher – subscriber. The collected RFID tags are published though the Apache Kafka
publisher on a predefined topic waiting to be consumed by the interested parties.

106 https://github.com/donMichaelL/reader_MTI_RU_861_010 & https://github.com/donMichaelL/e-pres

P.Ioakeimidis 102

https://github.com/donMichaelL/e-pres
https://github.com/donMichaelL/reader_MTI_RU_861_010

Integration of ROS, Turtlebot, RPLIDAR, RFID technologies and algorithm implementation for navigation and RFID tag detection in a warehouse.

> producer = KafkaProducer(bootstrap_servers=bootstrap_servers)

…

> producer.send(self.topic, value=bytes(content), timestamp_ms=timestamp_ms)

Streamed data from Apache Kafka can be consumed from anyone interested in these data
from a known address on a predefined topic.

11.2. Publishing on a ROS Topic the collected RFID Tags, Goal, and Position

Since in this project ROS is used for the control and navigation of the Turtlebot, it could be
useful to post the collected RFID tags as ROS topic. This could be useful in the future
applications because RFID technology could be useful not only for the goods detection in a
warehouse. For example ROS could read the specific RFID tags, first filtering out the RFID
tags that are unnecessary and finally using this tags verify and determining a more precise
location.

Data published on ROS Topic could be used in a scenario with multiple robots in a
warehouse. Data collected from a group of robots could be combined analyzed between
the robots in a peer to peer manner. By exchanging this data robots could succeed in the
following:

1. Better RFID tag detection.

2. Determining with more precision the position of each RFID tag.

3. Sharing information about already scanned areas of the warehouse.

4. Better navigation in the warehouse.

5. Sharing information about obstacles.

6. Better load balance of resources(robots) in the warehouses

P.Ioakeimidis 103

Figure 46: Simple Abstract Apache Kafka Architecture

Integration of ROS, Turtlebot, RPLIDAR, RFID technologies and algorithm implementation for navigation and RFID tag detection in a warehouse.

7. etc.

So a simple structure was implemented for publishing to a ROS topic the discovered RFID
tags, current position, and current goal. This structure could be improved in the future with
implementation of a dedicated type of message for RFID tags sent though ROS topic.

Creating a topic

self.pub = rospy.Publisher('rfid_topic', String, queue_size=10)

… … …

Publishing to a ROS topic

self.pub.publish(content)

This is a simple example implemented in Python for initializing and then publishing to a
ROS topic.

11.3. ROS Logging

ROS Logging is another mechanism provided by ROS described in previous chapter. This
mechanism is also provided by ROS, It is very useful for fast an easy monitoring of what is
going on within an implemented ROS program. It is possible to view the output directly on
the terminal or though a program provided by ROS and called “rqt_consol”. It is a really
simple and convenient way for real time logging with the help of ROS.

rospy.loginfo("[" + str(timestamp) + "]" + str(content))

P.Ioakeimidis 104

Figure 47: RQT console for showing ROS logs

Integration of ROS, Turtlebot, RPLIDAR, RFID technologies and algorithm implementation for navigation and RFID tag detection in a warehouse.

11.4. Simple File Storage

Finally the collected RFID tags are saved in simple text file, this could be replaced by a
database for example by a RDBMS or a Non Relational Database, but in this specific
example for as the results would be the same. RFID tags need to be stored for further
processing and study this is the main reason why RFID tags are saved.

11.5. Simple hash filtering of collected RFID tags

Another approach of handling the RFID tags is by storing them in a specially designed
hash structure. The RFID tags that are collected by the RFID reader are stored where no
duplicates can exist. Each RFID tag located by the RFID reader could appear multiple
times in each appearance each RFID tag has a different value of RSSI which is the
received signal strength indicator. By inserting the tags directly into the hash structure
when a new tag appears it is inserted into the structure. If the newly inserted RFID tag
wasn't detected before it is just inserted although if it has been detected previously the
RSSI value of the previous and the current RFID tags are compared and the tag with the
highest RSSI value is kept. This structure is important because we want to get the position
of the robot when the signal of the RFID tag was as strong as possible.

P.Ioakeimidis 105

Figure 48: Hash keeps unique RFID tags with the highest value of RSSI

Integration of ROS, Turtlebot, RPLIDAR, RFID technologies and algorithm implementation for navigation and RFID tag detection in a warehouse.

12. FINAL RESULT OF ALL SYSTEMS INTEGRATED TOGETHER

At this point all the separate parts are combined together

• Turtlebot

• Laptop running ROS

• Software

• Lidar

• RFID Antennas/Reader

Next are presented an abstract picture of all the system integrated together and also two
pictures of the life cycle of the data movement starting from the RFID tags and finishing
with the last stage of implemented Data Handler code. Through these two picture we can
observe the architecture and software stack of the project.

P.Ioakeimidis 106

Figure 49: Abstract presentation of all systems integrated together, Green: Hardware, Blue: software
installed or used, Orange: code implemented.

Integration of ROS, Turtlebot, RPLIDAR, RFID technologies and algorithm implementation for navigation and RFID tag detection in a warehouse.

P.Ioakeimidis 107

Figure 50: Data starts as a signal collected from RFID tags and Odometry and ends at Data Handler
Program

Integration of ROS, Turtlebot, RPLIDAR, RFID technologies and algorithm implementation for navigation and RFID tag detection in a warehouse.

Finally it is time to perform several final tests to get a spherical picture of the final system's
functionality. It is important to mention that there are many possible improvements or
changes but they are part of a possible future work performed in this domain.

P.Ioakeimidis 108

Figure 51: This picture represents approximately how a Goal is sent to Turtlebot.

Integration of ROS, Turtlebot, RPLIDAR, RFID technologies and algorithm implementation for navigation and RFID tag detection in a warehouse.

12.1. Experiments

Two types of experiments are performed the first type and the more accessible is in the
simulated world and the second type of experiments is in the physical world. The
implemented navigation program used for the Simulated and Physical world experiment is
the same. For both experiments the results were as expected.

 12.1.1 Simulated world experiments

Performing experiments in a simulation has many benefits. The experiments in the
simulated world are performed to examine the movement of the robot in a warehouse
world created in Gazebo. The experiments are performed with the help of Gazebo, and
RVIZ tools to test if the implemented code for the navigation of the Turtlebot in the
warehouse functions properly. The results about the movement of the Turtlebot were as
expected and no extraordinary behaviors were detected.

To test the navigation algorithm which is described in previous chapters a simulated world
was created with Gazebo. After the creation of the Gazebo world a map of the world was
created with RVIZ tool. After the completion of the two previous steps it was possible to
navigate in the created simulated warehouse. During the simulation we examine several
cases:

1st Case : Navigation in the warehouse without obstacle appearances.

This is the simplest case of all where Turtlebot robot moves on the predifined path of goals
without any unexpected behavior. Each time our robot completes a goal (reach the set
position), next goal is sent until all goals are completed which means that our robot has

P.Ioakeimidis 109

Figure 52: This picture shows approximately how the final system looks like with all technologies
integrated during the experiments and tests performed.

Integration of ROS, Turtlebot, RPLIDAR, RFID technologies and algorithm implementation for navigation and RFID tag detection in a warehouse.

successfully traversed whole path of goals. So in this case the robot would move as
described in previous chapter. If this case would be applied in the real physical world all
the RFID tags should be detected normally

2nd Case: Navigation with medium size obstacle occurrence.

This obstacle doesn't cover the whole width of the corridor so Turtlebot has enough space
to overcome the obstacle from the left or right side of the lying obstacle. In this case our
robot Turtlebot with the help of ROS packages described in previous sections recomputes
the path and continues it's movement on the new path overcoming the object. Although an
object appears on Turtlebot's path it doesn't affect the scanning of the RFIDs, normally all
RFID IDs are expected to be detected by the RFID antennas installed on top of Turtlebot.

Navigation in the simulated warehouse while the obstacle is already lying on the path of
the Turtlebot.

P.Ioakeimidis 110

Figure 56: An obstacle appears
on the Turtlebots path

Figure 54: Turtlebot avoid the
obstacle by moving around the left

side of the object

Figure 55: Turtlebot continues
moving towards the specified goal

Figure 53: In this picture we can observe a simulation where no
obstacles appear lying in the corridors of the warehouse.

Integration of ROS, Turtlebot, RPLIDAR, RFID technologies and algorithm implementation for navigation and RFID tag detection in a warehouse.

In this case we examine the case in which an object appears to lie in on the warehouse
corridor where normally it shouldn't be. The size of the object is not covering the whole
width of the warehouse corridor so the robot can overcome the obstacle by recomputing
the path to the goal position(pose). As presented on the screenshots made from the
simulated experiment in Gazebo and RVIZ Turtlebot detects the obstacle on its planed
path, recomputes a new path, and overcomes the obstacle from the left side finally
reaching its destination.

Unexpected obstacle appears in-front of the Turtlebot.

This case is similar to the previous case since the object is detected by Turtlebot's sensors
so it can overcome the obstacle lying on its path the same way as presented in previous
section.

Small objects that are not visible to the Turltbot.

In this case depending on the position of the Turtlebot sensors like Kinect and RPLidar,
Turtlebot will locate or not this lying object. With the default configuration in the simulation
Turtlebot doesn't detect a small object lying on the flour and continue moving towards its
goal. Sometimes this behavior can have no consequences and the obstacle will be pushed
away by the Turtlebot and in other case Turtlebot could be blocked and stack without the
ability to perform any movement. Normally in this case Turtlebot will detect all the RFIDs as
expected.

3rd Case: Navigation with large obstacle appearance. This obstacle covers the whole width of the
corridor and Turtlebot doesn't have enough space to pass from any of two sides.

In this case our robot and specifically Turtlebot can't overcome the obstacle since it covers
the whole width of the warehouse corridor. In this case Turtlebot as expected with the help
of ROS packages creates a new path and pass from a different warehouse corridor. The
problem that rises in this case is that Turtlebot leaves the warehouse corridor in which it
was moving and moves through a completely different route. So it is following a completely
different direction from the one described in a previous section. Since it is moving in a
different direction it would be harder to detect which RFIDs are on the left side and which
are on the right side of the warehouse corridor. Also during the change in the path a
different corridor is scanned that has as result to scan the same corridor more than once.
Last but not least the area where this large object is located is not scanned by the Turtlebot
since it is not approachable

This case requires a future investigation to be performed and with a different solution to be
applied. A solution applied for this case has to take in consideration Turtlebot's movement,
the RFID antennas and the RFID detection.

Possible solutions are:

P.Ioakeimidis 111

Integration of ROS, Turtlebot, RPLIDAR, RFID technologies and algorithm implementation for navigation and RFID tag detection in a warehouse.

• A possible solution is to implement an algorithm for the robot direction detection so

the direction of the robot movement inside of each corridor would be computed. By
knowing the Turtlebots direction it would be obvious which RFIDs are detected on
the left side and right side of the warehouse corridor.

• A different solution could be a deactivation of RFID antennas in such case until the

completion of this goal.

Another possible solution for such case could be a total robot deactivation and an alert
delivery until the obstacle removal.

 12.1.2 Physical world experiments

To perform the experiment in a real environment, we have to perform the following steps:

1. Create a map of the surrounding environment in which the experiment is planned to
be performed. The steps for map creation can be found in the Appendix of this work.

2. After the map creation we can try the navigation of Turtlebot in the world with the
help of the created map. Steps for navigation of Turtlebot are described in the
Appendix section

3. After the map creation with the help of the RVIZ tool we need to choose the Goals
positions on the created map and after that create the JSON file of goals that
contain waypoints.

4. Next step is to start the navigation with the help of the implemented program.
Turtlebot will move on top of waypoints specified in the JSON file.

5. After being sure that the navigation of Turtlebot in the world is performed smoothly it
is time to activate the RFID antennas. So we run the implemented algorithm for
RFID tag data collection.

6. Finally after running the experiment we expect to have collected 15 unique RFID
tags.

The integrated hardware Turtlebot, RPLIDAR, MTI module, RFID antennas, etc are
presented in the following picture

P.Ioakeimidis 112

Integration of ROS, Turtlebot, RPLIDAR, RFID technologies and algorithm implementation for navigation and RFID tag detection in a warehouse.

After the completion of all steps we are navigating in physical world and at the same time
the MTI RFID RF Module antennas are scanning for RFID tags placed around the
Turtlebot. The room where the experiment was performed is presented in the next pictures
is visible where the RFID tags are placed

P.Ioakeimidis 113

Figure 57: All the parts connected ready for the experiment

Integration of ROS, Turtlebot, RPLIDAR, RFID technologies and algorithm implementation for navigation and RFID tag detection in a warehouse.

In the next picture the map of the room where the experiment was performed is presented
also with red dots the positions of the RFIDs are marked.

P.Ioakeimidis 114

Figure 61: Created map of the room where the experiment was performed

Figure 58: Room where the experiment
was performed

Figure 59: Right side of the Room were
the boxes where positioned

Figure 60: RFIDs position on different
hights

Integration of ROS, Turtlebot, RPLIDAR, RFID technologies and algorithm implementation for navigation and RFID tag detection in a warehouse.

Finally after running the experiment from the data collected we can observe that all the
RFID tags where detected by the MTI module/antennas. The total number of RFID tags
was 15 and the detected RFID tags were 15 as well. Before placing the RFID tags, the
room was scanned for other RFID tags.

During the navigation and the RFID detection both RFID tags and Odometry data were
collected and stored in a hash structure which hold unique RFID tags with the highest
RSSI with exact position where this RFID tag was detected. So it is possible to confirm the
position the Turtlebot during the RFID tags detection.

P.Ioakeimidis 115

Figure 62: Turtlebot's path is marked with black dots. This picture shows the
performed movement.

Figure 63: Windows while running the
experiment in the left top window it is visible
that 10/15 RFIDs tags are detected, RFID tags

and Odometry data collected during the
experiment.

Figure 64: Windows while running the experiment
in the left top window it is visible that 15/15 RFIDs

tags are detected, all RFID tags are detected

Integration of ROS, Turtlebot, RPLIDAR, RFID technologies and algorithm implementation for navigation and RFID tag detection in a warehouse.

The experiments in the simulated and in the physical worlds prove that the integration of
ROS, Turtlebot, RPLidar, and RFID technologies is possible and successful for the
automated RFID detection.

P.Ioakeimidis 116

Integration of ROS, Turtlebot, RPLIDAR, RFID technologies and algorithm implementation for navigation and RFID tag detection in a warehouse.

13. FUTURE WORK, IMPROVEMENTS AND ADDITIONS

13.1. Better implementation and design of custom ROS path planner algorithm

ROS has already several implemented path planners although they are pretty good for
what they are meant to do there is steal space for improvement. A path planner should be
implemented that could meet the following requirements.

1. Let the user choose if he want to set a position for the goal inside an object
(combination of “global path planner “and “carrot planner”)

2. When suddenly an obstacle appears on top of set goal's destination position let the
robot move as close as the user defined in the configuration parameters to the goal.

3. Let the user retrieve the path without sending it to the robot independently from
where the goal is set and return a path as close as possible to the position of the set
goal.

As far as we know there are no implemented ROS path planners global or local with three
functionalities.

13.2. Experiment with other systems for better getting more complete experiment
results and evaluation

Other substitute systems could be used for the implementation of this work not because
the system selected here are not appropriate but to have a more spherical results and
more solid prove that the systems and technologies used here have been chosen right.

13.3. Experiment in different environments

The environments available for the experimentation were limited so a more extensive and
precise evaluation of the system could be performed. Experimentation in different
environments could reach the robotic system to its limits providing a greater set of results
for analysis.

13.4. Additional sensors

An example of an additional sensor used is a “fire sensor” this sensor could provide
additional level of security to the already installed fire detection systems. For example a
robot moving in a warehouse could faster analyze and detect a possible fire in dense
warehouse full of goods. Also in a warehouse where more than one robot are working such
kind of sensor could add a higher level of security if a fire appears.

13.5. Intruders detection

Although there are many levels of security at warehouses with thousands of goods.
Another level of security could be added though a special intrusion detection algorithm
running on the robots inside of a warehouse. Most of robots has mounted cameras or

P.Ioakeimidis 117

Integration of ROS, Turtlebot, RPLIDAR, RFID technologies and algorithm implementation for navigation and RFID tag detection in a warehouse.

sensors for navigation this sensors could be used for motion detection for detecting
movement or facial recognition for detecting authorized working stuff. If an unexpected
behavior is recorded by the robot an allert could be send to the security staff.

13.6. Positions with tags usage of two different tag types (1.products, 2.positioning)

Two different tag types could be introduced to a warehouse. The first type could be for
detecting and recording, or in other words performing inventory as described in this master
thesis and a second sensor for better position in the warehouse could be introduced. This
would elevate the navigation skills of the robots and give more abilities for navigating
inside of the warehouse and any other space.

13.7. Using GPS or Wifi positioning of the robot in the warehouse

A more precise systems like wildly known GPS or even Wifi could be used for better
positioning of Turtlebot or any other robot in a any space where it is performing its work.

13.8. A commercial completed Web/Mobile/Desktop Application for live monitoring,
data filtering, revision of saved RFID data.

For a more commercial solution it is important to implement a fully operational system that
will host all the necessary for the configuration and handling of the robotic system.

13.9. Implementation of a complete package for RFID and ROS integration (if
possible)

ROS is really evolved robot system the reason why this happens is because it open source
and the community builds and shares its creations. It could be really useful a package
implemented in ROS specifically for the MTI Reader/Module (used in this master thesis) for
out of the box use of the MTI reader alongside with ROS by just installing the package
alongside with the per-installed ROS system.

13.10. Implementation of an algorithm for detection of what was expected and what
was really detected in the warehouse.

It is often that goods are stolen from warehouses this leads to economic loss. This could
be avoided with the system implemented in this master thesis. In this master thesis an
algorithm is already used for the collection of RFID tags mounted on top of object. By
keeping also a database of all objects that are expected to exist in the warehouse at the
current moment it is possible to track the difference between the detected goods and the
expected goods that normally should be on the shelves of the warehouse.

13.11. Implementation of an algorithm for automatic RFID antenna and tag direction
detection.

Since robot in several cases can change direction this can create confusions about which
tags were collected on which side, left or right of the warehouse corridors. In our case we
are interested about the exact side of the corridor where the RFID tag was detected, left or
right. So an algorithm that wouldn't mind the direction towards which the robot is moving.

P.Ioakeimidis 118

Integration of ROS, Turtlebot, RPLIDAR, RFID technologies and algorithm implementation for navigation and RFID tag detection in a warehouse.

This algorithm would automatically detect the side on which the RFID tags were detected.
An algorithm like this needs to detect the direction of the robot movement.

13.12. Automatic antenna activation and deactivation

Robot could periodically perform validations of the position where it is moving and if it has
already passed from a position the RFID antenna inventory could be paused automatically.

P.Ioakeimidis 119

Integration of ROS, Turtlebot, RPLIDAR, RFID technologies and algorithm implementation for navigation and RFID tag detection in a warehouse.

14. CONCLUSION

It is obvious that a lot of interesting work could be be done in the domain of robotics,
automation etc. and in the fields relevant to this work. Speaking about this work the result
met our expectations although several unexpected problems where met mostly relevant to
the behavior of the technologies used. The knowledge acquired though this work is very
constructive and useful for future research in many different fields. The final result presents
a working prototype in a supervised and controlled environment functioning as expected.

P.Ioakeimidis 120

Integration of ROS, Turtlebot, RPLIDAR, RFID technologies and algorithm implementation for navigation and RFID tag detection in a warehouse.

15. ABBREVIATIONS - ARCTICS – ACRONYMS

Abbreviation Full Phrase

ROS Robotic Operating System

RFID Radio Frequency Identification

LIDAR Light Detection and Ranging

GPS Global Position System

Wifi Wireless Local Area networking (Wireless Fidelity)

DSL Domain Specific Language or more precisely

EDL Experiment Descriptive Language

RDBMS Relation Database System

RSSI Received Signal Strength Indicator

NFC Near Field Communication

UHF Ultra High Frequency

HF High Frequency

LF Low Frequency

RF Radio Frequency

UV Ultra Violent

dBm (dBmW) Power ration in decibels (dB) of the measured power referenced
to one milliwatt (mW)

dB decibels

HID Human Interface Device

USB Universal Serial Bus

Rviz ROS Visualization

JSON Javascript Object Notation

P.Ioakeimidis 121

Integration of ROS, Turtlebot, RPLIDAR, RFID technologies and algorithm implementation for navigation and RFID tag detection in a warehouse.

Abbreviation Full Phrase

SDK Software Development Kit

API Application Programming Interface

XMLRPC XML Remote Procedure Call (RPC)

RPC Remote Proceude Call

XML Extensible Markup Language

P.Ioakeimidis 122

Integration of ROS, Turtlebot, RPLIDAR, RFID technologies and algorithm implementation for navigation and RFID tag detection in a warehouse.

APPENDIX I

I.1 Technologies used in this master thesis

• ROS Indigo

• Turtlebot 2

• RPLIDAR A2 lidar

• RFID Antennas, MTI RFID Reader, RFID Tags

• Linux Ubuntu 14.04 LTS Trusty,

• Python Programming Language 2.7

• Apache Kafka 2.11

etc.

I.2 Linux 14.04 LTS

In this master thesis Ubuntu Trusty 14.04 LTS Linux Operating System107 was used along
with ROS Indigo Igloo (ROS Indigo Igloo is ONLY compatible with Ubuntu Saucy 13.10
and Trusty 14.04 LTS). These choices where taken due to the compatibility with the real
Turtlebot robot of the lab which was available during this master thesis period for
experimentation purposes. Instructions according the Installation of Linux are available on-
line and are not described here. In the next chapter the installation of ROS Indigo is
described. Both Ubuntu 14.04 and ROS Indigo are Long Term Supported and fully
compatible with each other108.

If you have Linux already pre-installed check your distribution version by running the
following command :

> lsb_release -a

I.3 Installation and Configuration of ROS Indigo Environment

ROS Indigo Igloo109 is on of ROS Long Term Service distributions it's main target platform that
offers support is Ubuntu 14.04 LTS Trusty release (although other systems supports ROS Indigo
Igloo to a certain level like other Linux systems, Mac OS X, Android, and Windows). It is was
released on July 22nd, 2014 and it is supported until April, 2019 (Trusty EOL). Finally
according the architecture there are binary packages available for both 32 and 64 bit
architectures.
107 Older distributions of Ubuntu could be accessed on the following page http://releases.ubuntu.com/14.04/.

108 http://www.ros.org/reps/rep-0003.html

109 http://wiki.ros.org/indigo

P.Ioakeimidis 123

http://wiki.ros.org/indigo
http://www.ros.org/reps/rep-0003.html
http://releases.ubuntu.com/14.04/

Integration of ROS, Turtlebot, RPLIDAR, RFID technologies and algorithm implementation for navigation and RFID tag detection in a warehouse.

I.4 ROS Indigo Installation

In this chapter several steps for the installation and configuration of ROS Indigo
Environment will be described as fast as possible. For more information official ROS
website information is available.

Step 1.

Check your Ubuntu distribution since ROS Indigo supports Saucy (13.10) and
Trusty (14.04) for Debian packages. If you want to install Ubuntu refer to the chapter
where Ubuntu installation is described. Open a terminal and type the following
command lsb_release -a the result presented in the picture will appear.

Step 2.

Configure Ubuntu repositories to allow “restricted”, “universe”, and “multiverse”.

Step 3.

Setup your sources.list to accept software from packages.ros.org

sudo sh -c 'echo "deb http://packages.ros.org/ros/ubuntu $(lsb_release
-sc) main" > /etc/apt/sources.list.d/ros-latest.list'

P.Ioakeimidis 124

Figure 65: Ubuntu distribution 14.04.5 LTS
trusty

Figure 66: Ubuntu allowed repositories

Integration of ROS, Turtlebot, RPLIDAR, RFID technologies and algorithm implementation for navigation and RFID tag detection in a warehouse.

Step 4.

Setup the keys by running the following command

sudo apt-key adv --keyserver hkp://ha.pool.sks-keyservers.net:80 --recv-
key 421C365BD9FF1F717815A3895523BAEEB01FA116

other key servers: 1) hkp://pgp.mit.edu:80 and 2) hkp://keyserver.ubuntu.com:80

Step 5.

Next run in your terminal the following command to update the Debian package
index

sudo apt-get update

Step 6.

Finally it is time to install the ROS Indigo in this work the desktop full installation was
installed and generally the desktop full is recommenced because it includes all the
packages necessary like ROS, rqt, rviz, robot-generic libraries, 2D/3D simulators
and 2D/3D perception. To install the ROS desktop full installation run the following
command

sudo apt-get install ros-indigo-desktop-full

* To find the available packages run the following command : apt-cache search
ros-indigo

I.5 Turtlebot Gazebo

110In this master thesis Gazebo was useful to test the movement of the Turtlebot in indoor
environment. Before applying the application created on real physical TurtleBot.

• To install the turtlebot_simulator pachage software run the following command:

> sudo apt-get install ros-indigo-turtlebot-simulator

1. To install Gazebo package run the following command in you terminal:

110 For more information about ROS Turtlebot simulation refer to the following sources:

http://wiki.ros.org/turtlebot_simulator

http://learn.turtlebot.com/2015/02/03/1/

http://gazebosim.org/

P.Ioakeimidis 125

http://gazebosim.org/
http://learn.turtlebot.com/2015/02/03/1/
http://wiki.ros.org/turtlebot_simulator

Integration of ROS, Turtlebot, RPLIDAR, RFID technologies and algorithm implementation for navigation and RFID tag detection in a warehouse.

> sudo apt-get install ros-indigo-turtlebot-gazebo

2. It is important to notice that in each new terminal that is started, we need to
configure each terminal with the ROS environment variables by running the
following command:

> source /opt/ros/indigo/setup.bash

*To avoid this step add the above command in ~/.bashrc file. Changing the
distribution of the ROS in our case we are running the Indigo ROS distribution :

“source /opt/ros/{YOUR_ROS_DISTRIBUTION}/setup.bash”,

after this addition each newly started terminal will be per-configured.

3. Next start the Gazebo simulation, this commands will initiate the Turtlebot in the
Gazebo simulated world.

> roslaunch turtlebot_gazebo turtlebot_empty_world.launch

The following window will pop up after several seconds. In which we can observe
Turtlebot standing surrounded with objects created in the Simulated world of Gazebo
simulator.

P.Ioakeimidis 126

Integration of ROS, Turtlebot, RPLIDAR, RFID technologies and algorithm implementation for navigation and RFID tag detection in a warehouse.

4. Finally by setting several environment variables TURTLEBOT_XXX it is possible to
customize the simulated Turtlebot.

I.6 Move Turtlebot in simulated world

1. > sudo apt-get install ros-indigo-turtlebot-apps ros-indigo-turtlebot-
rviz-launchers

2. > roslaunch turtlebot_teleop keyboard_teleop.launch

1. or roslaunch turtlebot_teleop ps3_teleop.launch

3. > roslaunch turtlebot_gazebo turtlebot_world.launch

I.7 Creating Simulation of warehouse with Turtlebot in GAZEBO

P.Ioakeimidis 127

Figure 67: Gazebo simulation turtlebot_empty_world.launch

Integration of ROS, Turtlebot, RPLIDAR, RFID technologies and algorithm implementation for navigation and RFID tag detection in a warehouse.

1. Build your own world with GAZEBO by adding addition object to the simulation.

>roslaunch gazebo_ros empty_world.launch

2. Save your world as warehouse.world

3. Open to turtlebot_gazebo

 >roscd turtlebot_gazebo

4. Move your created world to /maps directory

5. In /launch directory

>cp turtlebot_world.launch turtlebot_world_warehouse.launch

6. In your turtlebot_world_warehouse.launch change the following bold line

 <include file="$(find gazebo_ros)/launch/empty_world.launch">

 <arg name="use_sim_time" value="true"/>

 <arg name="debug" value="false"/>

 <arg name="gui" value="$(arg gui)" />

 <arg name="world_name"
value="/opt/ros/indigo/share/turtlebot_gazebo/worlds/warehouse.world"/>

 </include>

15.1. Create a map of previously created simulation

To create a map of previously created simulation run the following commands

1. >roslaunch turtlebot_gazebo turtlebot_world_warehouse.launch

P.Ioakeimidis 128

Figure 68: In this picture is presented
the warehouse built with GAZEBO

Integration of ROS, Turtlebot, RPLIDAR, RFID technologies and algorithm implementation for navigation and RFID tag detection in a warehouse.

2. >roslaunch turtle_gazebo gmapping_demo.launch

3. >rosrun map_server map_saver -f my_map_warehouse

Before running the previous command start both Turtlebot and RPLidar.

It will create a my_map_warehouse .yaml and my_map_warehouse.pmg files.

I.8 Navigating in previously created map

To navigate in previously created Gazebo simulation run the following commands

1. >roscore

2. >roslaunch turtlebot_gazebo turtlebot_world_warehouse.launch

3. >roslaunch turtlebot_gazebo amcl_demo.launch map_file:=/home/ubuntu-

ros/my_map_warehouse.yaml

4. >roslaunch turtlebot_rviz_launchers view_navigation.launch –screen

To navigate in a real world run

I.9 Create a map of a physical world

1. >roslaunch turtlebot_bringup minimal.launch

2. >roslaunch turtlebot_bringup 3dsensor.launch → (kinect)

>roslaunch rplidar_ros rplidar.launch → (rplidar)

3. >roslaunch turtlebot_navigation gmapping_demo.launch

4. >roslaunch turtlebot_rviz_launchers view_navigation.launch

5. >roslaunch turtlebot_teleop keyboard_teleop.launch

6. >rosrun map_server map_saver -f my_map_warehouse

I.10 Navigate in created map

1. >roslaunch turtlebot_bringup minimal.launch

2. >roslaunch rplidar_ros rplidar.launch

3. >roslaunch turtlebot_navigation amcl_demo.launch map_file:=/home/ubuntu-

ros/tmp/my_map_warehouse.yaml

4. >roslaunch turtlebot_rviz_launchers view_navigation.launch

I.11 RVIZ

RVIZ is a useful tool for many reason especially for navigation independently if we are

P.Ioakeimidis 129

Integration of ROS, Turtlebot, RPLIDAR, RFID technologies and algorithm implementation for navigation and RFID tag detection in a warehouse.

performing simulation or we are navigating in the real world.

1. 2D Pose Estimate is used for estimating the physical robot's position on the map

◦ At the beginning the real position of the robot and the position on the RVIZ

are not aligned. So performing 2D Pose Estimation should be performed.
Sometime the robot can compute his position automatically with the help of
AMCL.

2. Left Pane is used for changing parameters like planners or topic of laser scan and
also for choosing what we want to appear in the RVIZ main panel.

3. 2D Nav Goal is used for setting a goal to a robot, so the robot will navigate towards
the specified position.

4. Measure is used for measuring distances.

◦ In our case it was used for measuring the distance between the shelves of

the warehouse.

5. Publish Point is used for finding an exact position (x,y) on the map.

◦ Publish point was used for finding the exact positions on the map where we

want to navigate. After computing all the required positions on the map it was
possible to create a file with all (x,y) positions for consumption by our
navigation algorithm.

6. Central Panel represent the main map, our robot, point cloud etc...

P.Ioakeimidis 130

Figure 69: RVIZ, Turtlebot in the right bottom corner on top of created warehouse map

Integration of ROS, Turtlebot, RPLIDAR, RFID technologies and algorithm implementation for navigation and RFID tag detection in a warehouse.

Generally in this RVIZ alongside with Gazebo were used always while performing
experiments, navigating, creating maps. Etc.

I.12 Integrating RPLIDAR A2 with Turtlebot 2

Rplidar packages

In this project RPLIDAR is used for building a 2D map of an indoor environment, navigation
and localization. Two packages rplidar_ros and rplidar_python are provided by ROS and
support RPLIDAR A1 and A2, in our case RPLIDAR A2 is the one we are working with.
RPLIDAR supports Hydro, Indigo, Jade, and Kinetic ROS distribution.

Assumption is made that Ubuntu 14.04 Trusty and ROS Indigo are already installed and
configured, or any other distribution of Ubuntu and ROS computable with each other and
rplidar packages. For Linux Ubuntu and ROS Indigo installation refer to the corresponding
chapters.

Step 1 :

Installing ROS Indigo

> sudo sh -c 'echo "deb http://packages.ros.org/ros/ubuntu $(lsb_release -sc)
main" > /etc/apt/sources.list.d/ros-latest.list'

> sudo apt-key adv --keyserver hkp://ha.pool.sks-keyservers.net:80 --recv-key
421C365BD9FF1F717815A3895523BAEEB01FA116

(other key servers: hkp://pgp.mit.edu:80, hkp://keyserver.ubuntu.com:80)

> sudo apt-get update

> sudo apt-get install ros-indigo-desktop-full

Initialize rosdep

> sudo rosdep init

> rosdep update

Environment setup

> echo “source /opt/ros/indigo/setup.bash” >> ~/.bashrc

> source ~/.bashrc

Getting rosinstall

P.Ioakeimidis 131

Integration of ROS, Turtlebot, RPLIDAR, RFID technologies and algorithm implementation for navigation and RFID tag detection in a warehouse.

> sudo apt-get install python-rosinstall

Step 2

Build and setup catkin

> mkdir ~/catkin_ws/src/

> catkin_init_workspace

> cd ~/catkin_ws/

> catkin_make

> echo “source ~/catkin_ws/devel/setup.bash” >> ~/.bashrc

Step 3:

a) To check if rplidar package is already installed on our system we can run the following
command :

> rospack find rplidar_ros

> rospack find rplidar_python

To find any available packages

> run apt-cache search ros-indigo

if rplidar_ros package is already installed this command will return a path to this ROS
package on our system. If these packages are not already installed we can run the
following commands:

> sudo apt-get install ros-indigo-rplidar-ros

> sudo apt-get install ros-indigo-rplidar-python

b) Inside of the ~/catkin_ws/src clone the code from github 111

by running the following command:

> git clone https://github.com/robopeak/rplidar_ros.git

and build with catkin by running the following commands:

> cd ~/catkin_ws/

> catkin_make

> source devel/setup.bash

Step 4 (Starting RPLIDAR)

111 https://github.com/robopeak/rplidar_ros (tested) or https://github.com/roboticslab-fr/rplidar-turtlebot2 (not
tested)

P.Ioakeimidis 132

https://github.com/robopeak/rplidar_ros.git
https://github.com/roboticslab-fr/rplidar-turtlebot2
https://github.com/robopeak/rplidar_ros

Integration of ROS, Turtlebot, RPLIDAR, RFID technologies and algorithm implementation for navigation and RFID tag detection in a warehouse.

Finally we are ready to plug RPLIDAR's USB into our computer USB port and run rplidar
ROS package. For running rplidar ros package there are two different ways:

a) Run rplidar node and view in the rviz (launch demo with Rviz)

> roslaunch rplidar_ros view_rplidar.launch

RVIZ window will appear where it is possible to observe on top of the dark grey grid the
feedback from the RPLIDAR which scans the surrounding environment in range between
15cm to 12/18m. The red marks on top of the grid represent the obstacle which exist
around RPLIDAR.

b) b) Run rplidar node and view using test applications

> roslaunch rplidar_ros rplidar.launch

> rosrun rplidar_ros rplidarNodeClient

In this case RPLIDAR's scan result will appear in the console

P.Ioakeimidis 133

Figure 70: RPLIDAR A2 scan result of a room, read lines represent the wall of the room or
other obstacles

Figure 71: Scan results from RPLIDAR A2

Integration of ROS, Turtlebot, RPLIDAR, RFID technologies and algorithm implementation for navigation and RFID tag detection in a warehouse.

Step 5 (Troubleshooting) Adding serial-port authority of write

In case where RPLIDAR doesn't start spinning follow the following procedure.

a) Check the authority of the rplidar's serial-port:

> ls -l /dev | grep ttyUSB

b) According to the result from the previous step(in our case it is USB0) add the
authority of write:

> sudo chmod 666 /dev/ttyUSB0

Step 6 (Troubleshooting) How to remap the USB serial port name

If RPLIDAR is still not responding and didn't start spinning there is a possibility that the
change we performed in the previous step, for a fixed rplidar port run the following script
from the rplidar ROS package :

> ./scripts/create_udev_rules.sh

now run the following command once again to check if changes took effect:

> ls -l /dev | grep ttyUSB

After completing the procedure of changing the USB port remap to a fixed name, change
the launch file to the serial_port value, to edit the launch file type in the editor the following
ros command:

>rosed rplidar_ros rplidar.launch

next edit the following line of the launch file

<param name="serial_port" type="string" value="/dev/rplidar"/>

another approach is just to change the value to /dev/ttyUSB0 or /dev/ttyUSB1 etc... every
time when rplidar is mounted to a USB port.

After completing the steps 5 and 7 after running ls -l /dev | grep ttyUSB the following
result will appear:

*In my case for the changes to take effect removing and inserting again the USB devices
to he USB ports was helpful.

P.Ioakeimidis 134

Figure 72: USB ports with RPLIDAR and KOBUKI mounted

Integration of ROS, Turtlebot, RPLIDAR, RFID technologies and algorithm implementation for navigation and RFID tag detection in a warehouse.

After completing the Step 6 RPLIDAR is finally completely functional. Now it is time to
complete the configuration of the launch files and the position where the RPLIDAR will be
physically mounted on top of Turtlebot 2.

Step 7

Finally maybe there is a need to configure the turtlebot launch file to generate scan topic
for both RPLIDAR and Kinect. To configure 3dsensor.launch file run the following
commands:

> roscd turtlebot_bringup/launch

> gedit 3dsensor.launch

Change the following line :

 <!-- Laserscan topic -->
 <arg name="scan_topic" default="scan"/>

change the default value from scan to scan_kinect so kinect publishes to different topic.
After finishing with 3dsensor.launch file configuration we have to configure Rtabmap
launch file to to let working rplidar publishing on scan and Kinect on /scan_kinect. In our
case this step in not important since we are only interested in working with RPLIDAR and
not Kinect. After completing the presented steps the integration of RPLIDAR and Turtlebot
is complete112.

I.13 Mounting RPLIDAR A2 on top of Turtlebot 2

Step 8

1. Adjust the proper urdf files turtlebot_description/urdf/stacks/circles.urdf.xarco
and turtlebot_create/../create_description/urdf/create.urdf.xacro files
appropriately by adding the appropriate content similar to :

<joint name="laser_joint" type="fixed">

 <origin xyz="[x] [y] [z]" rpy="[rot_x] [rot_y] [rot_z]" />

 <parent link="[plate on which the laser is]" />

 <child link="laser" />

112 https://github.com/robopeak/rplidar_ros/wiki

https://github.com/robopeak/rplidar_ros/

http://wiki.ros.org/rplidar

https://blog.zhaw.ch/icclab/rplidar/

https://github.com/roboticslab-fr/rplidar-turtlebot2

P.Ioakeimidis 135

https://github.com/roboticslab-fr/rplidar-turtlebot2
https://blog.zhaw.ch/icclab/rplidar/
http://wiki.ros.org/rplidar
https://github.com/robopeak/rplidar_ros/
https://github.com/robopeak/rplidar_ros/wiki

Integration of ROS, Turtlebot, RPLIDAR, RFID technologies and algorithm implementation for navigation and RFID tag detection in a warehouse.

</joint>

The circles.urdf.xarco is needed to locate where the sensor is planned to be
installed. In the create.urdf.xarco file it looks like following code:

<joint name="laser_joint" type="fixed">

 <origin xyz="0.015 0.00 0.01" rpy="0 0 0" />

<parent link="plate_3_link" />

<child link="laser" />

</joint>

<link name="laser">

 <visual>

 <geometry>

 <box size="0.04 0.04 0.02" />

 </geometry>

 <material name="Green" />

 </visual>

 <inertial>

 <mass value="0.001" />

 <origin xyz="0 0 0" />

 <inertia ixx="0.0001" ixy="0.0" ixz="0.0" iyy="0.0001"
iyz="0.0" izz="0.0001" />

 </inertial>

</link>

After applying that changes run RVIZ:

> roslaunch turtlebot_bringup minimal.launch

> rosrun rviz rviz

After RVIZ window appears don't forget to add robot model and fixed frame “base_link”.
For this to work properly set the TURTLEBOT_BASE environmental variable to “create” in
the next step change back the variable to “kobuki”

2. <node pkg="tf" type="static_transform_publisher" name="laser" args="x y z
rot_x rot_y rot_z parent_link child_link frequency"/>

P.Ioakeimidis 136

Integration of ROS, Turtlebot, RPLIDAR, RFID technologies and algorithm implementation for navigation and RFID tag detection in a warehouse.

for example

<node pkg="tf" type="static_transform_publisher" name="laser" args="0.015
0.00 -0.01 0 3.14159265 0 /plate_top_link /laser 50"/>

or run the following command

> rosrun tf static_transform_publisher 0.015 0.00 -0.01 0 3.14159265 0
/plate_top_link /laser 50

Step 9

Finally we are done with the preparation now it is time to test if everything works as
expected.

1. roslaunch turtlebot_bringup minimal.launch

2. roslaunch turtlebot_navigation gmapping_demo.launch

3. roslaunch rplidar_ros rplidar.launch or roslaunch turtlebot_bringup
3dsensor.launch

4. roslaunch turtlebot_rviz_launchers view_navigation.launch

After executing the last command RViz window should appear and look similar to he
following screen-shot:

After this step we are ready to navigate with Turtlebot or create a map of an unknown area.

Finally an important observation according rplidar is that it rotates with clockwise
direction. The first range come from the front. (the tail with the line).

P.Ioakeimidis 137

Figure 74: RVIZ Turtlebot scan with RPLIDAR A2
Figure 73: RVIZ Turtlebot scan with RPLIDAR A2

Integration of ROS, Turtlebot, RPLIDAR, RFID technologies and algorithm implementation for navigation and RFID tag detection in a warehouse.

I.14 ERROS – WARNING – PROBLEMS

PROBLEM 1.

ERROR presented next appears when base is set to kobuki and the following command
is executed:

> roslaunch turtlebot_bringup minimal.launch

“[ERROR] [1524658724.295353692]: Kobuki : malformed sub-payload detected. [206][170]
[CE AA 55 4D 01 0F B8 00] ”.

Although this error shows up it appears that the functionality we need is not affected from
this error and turtlebot moves as expected.

It appears to be a USB problem computer problem but on a different source it is mentioned
that this could happen due to dependencies problem and that the problem was solved after
a fresh install of both OS and ROS113.

PROBLEM 2.

WARN appears when base is set to create and the following command is executed:

> roslaunch turtlebot_bringup minimal.launch

“[WARN] [WallTime: 1524661448.188054] Create : robot not connected yet, sci not
available ”

113 https://github.com/introlab/rtabmap_ros/issues/191

https://answers.ros.org/question/52203/kobuki-malformed-subpayload/

P.Ioakeimidis 138

Figure 75: RPLIDAD A2 geometry representing the
front the rear and the rotation direction of

RPLIDAR A2 source:
https://github.com/robopeak/rplidar_ros/wiki

https://answers.ros.org/question/52203/kobuki-malformed-subpayload/
https://github.com/introlab/rtabmap_ros/issues/191
https://github.com/robopeak/rplidar_ros/wiki

Integration of ROS, Turtlebot, RPLIDAR, RFID technologies and algorithm implementation for navigation and RFID tag detection in a warehouse.

and

“[ERROR] [WallTime: 1524662134.356473] Failed to contact device with error:
[Distance, angle displacement too big, invalid readings from robot. Distance: 16.66,
Angle: 0.00]. Please check that the Create is powered on and that the connector is
plugged into the Create. ”

On-line there are several issues mentioned similar to this one but no obvious solution is
suggested114.

PROBLEM 3.

It is important to always have in mind the power supply of MTI RF RFID module because
when the power is not enough the Antennas are not functioning properly as expected. In
several cases when laptop run out of battery, Antennas didn't function properly. In another
case during the experiments when the used USB cable connected to MTI RFID RF module
was longer than 1.5m the Antennas didn't function properly. This behavior caused
problems to the execution of the inventory program during the RFID tags detection.

I.15 Running Turtlebot in physical world

1. Roscore

2. Start Apache and subscribe to topic

3. > rqt_console

4. > rostopic echo /rfid_topic

5. > roslaunch turtlebot_bringup minimal.launch

6. > roslaunch rplidar_ros rplidar.launch

7. > rosrun tf static_transform_publisher 0.015 0.00 -0.01 0 3.14159265 0
/plate_top_link /laser 50

8. > roslaunch turtlebot_navigation amcl_demo.launch map_file:=<path to
yaml>

9. > roslaunch turtlebot_rviz_launchers view_navigation.launch

10.Run odometry service
114 https://answers.ros.org/question/205105/error-bringing-up-the-robotwarn-create-robot-not-connected-
yet-sci-not-available/

https://groups.google.com/forum/#!topic/ros-sig-turtlebot/GaN92YeW3aE
https://groups.google.com/forum/#!topic/ros-by-example/asVx2Eoga-k
https://answers.ros.org/question/269833/error-walltime-1504001477235354-failed-to-contact-device-with-
error-error-reading-from-sci-port-no-data-please-check-that-the-create-is-powered-on-and/

P.Ioakeimidis 139

https://answers.ros.org/question/269833/error-walltime-1504001477235354-failed-to-contact-device-with-error-error-reading-from-sci-port-no-data-please-check-that-the-create-is-powered-on-and/
https://answers.ros.org/question/269833/error-walltime-1504001477235354-failed-to-contact-device-with-error-error-reading-from-sci-port-no-data-please-check-that-the-create-is-powered-on-and/
https://groups.google.com/forum/#!topic/ros-by-example/asVx2Eoga-k
https://groups.google.com/forum/#!topic/ros-sig-turtlebot/GaN92YeW3aE
https://answers.ros.org/question/205105/error-bringing-up-the-robotwarn-create-robot-not-connected-yet-sci-not-available/
https://answers.ros.org/question/205105/error-bringing-up-the-robotwarn-create-robot-not-connected-yet-sci-not-available/

Integration of ROS, Turtlebot, RPLIDAR, RFID technologies and algorithm implementation for navigation and RFID tag detection in a warehouse.

11.Run navigation program

12.Run inventory program

I.16 Giving permissions to USB MTI RFID RF Module

1. Open directory for adding the rules: cd /etc/udev/rules.d

2. Determine the vendor id and produc id of the device : lsusb

3. Create a file for rules: sudo pico rfid.rules

4. Add the following lines

SUBSYSTEM=="usb", ATTRS{idVendor}=="24e9", ATTRS{idProduct}=="0861",
MODE="0777", GROUP="dialout"

SUBSYSTEM=="usb", ATTRS{idVendor}=="9449", ATTRS{idProduct}=="2145",
MODE="0777", GROUP="dialout"

5. Run: sudo service udev reload & sudo service udex restart

I.17 Command for running Kafka in Linux

1. Open Kafka User : su kafka

2. Start Kafka : nohup ~/kafka/bin/kafka-server-start.sh
~/kafka/config/server.properties > ~/kafka/kafka.log 2>&1 &

3. Produce Message : echo "Hello, World" | ~/kafka/bin/kafka-console-
producer.sh --broker-list localhost:9092 --topic TutorialTopic > /dev/null

4. Consume Message : ~/kafka/bin/kafka-console-consumer.sh --zookeeper
localhost:2181 --topic TutorialTopic –from-beginning

5. Stop Kafka : ~/kafka/bin/kafka-server-stop.sh

I.18 Implemented Algorithms

In this project several algorithms where implemented for Data Handling, Goals and
Movement of Turtlebot. These algorithms used several main ROS libraries, packages and
core functionalities. Programs implemented are contained in the attached files.

P.Ioakeimidis 140

Integration of ROS, Turtlebot, RPLIDAR, RFID technologies and algorithm implementation for navigation and RFID tag detection in a warehouse.

REFERENCES

[1] Kostas Kolomvatsos, Michael Tsiroukis, Stathes Hadjiefthymiades. 2017. “An
Experiment Description Language for Supporting Mobile Iot Applications”. National And
Kapodistrian University of Athens. Department of Informatics and Telecomunications
[2] Michail Chatzidakis, Michail Loukeris, Kostis Gerakos, Stathes Hadjiefthymiades.
2016. “E-Pres: Monitoring and Evaluation of Natural Hazard Preparedness At School
Community”. Pervasive Computing Research Group. National And Kapodistrian University
of Athens. Department of Informatics and Telecomunications.
[3] Kshitija Deshmukh, Ashitha Ann Santhosh, Yogesh Mane, Saurabh Verma, Sdhana
Pai. Nov 2015. “Robotic navigation and inventory management in warehouses”.
International Journal of Soft Computing and Artificial Intelligence. ISSN. 3(2): 75-79
[4] Kaiyu Zheng. Sep 2016, “ROS Navigation Tuning Guide”
[5] Morgan Quigley, Brian Gerkey, Ken Conley, Josh Faust, Tully Foote, Jeremy Leibs,
Eric Berger, Rob Wheeler, Andrew Ng, 2009, ROSQ: an open-source Robot Operating
System”, ICRA Workshop on Open Source Software, Kobe, Japan, 2009
[6] “Effective Robotics Programming with ROS” Third Edition by Anil Mahtani, Luis
Sanchez, Enrique Fernandez, Aaron Martinez, Publisher Packt, 2016

[7] http://www.ros.org/

[8] http://wiki.ros.org/

[9] http://learn.turtlebot.com/

[10] https://en.wikipedia.org/

[11] https://www.turtlebot.com

[12] https://www.mtigroup.com/

[13] https://www.slamtec.com/en/Lidar/A2

P.Ioakeimidis 141

https://www.slamtec.com/en/Lidar/A2
https://www.mtigroup.com/
https://www.turtlebot.com/
https://en.wikipedia.org/
http://learn.turtlebot.com/
http://wiki.ros.org/
http://www.ros.org/

	PROLOGUE – FOREWORD
	1. INTRODUCTION
	1.1. Current Situation
	1.2. Why this work is important
	1.3. Questions answered in this master thesis
	1.4. Hypothesis
	1.5. Methodology algorithm implemented for the navigation and RFID data collection.

	2. PROBLEM DESCRIPTION
	3. PREVIOUS WORK
	3.1. Work 1: EDL
	3.2. Work 2: E-Pres
	3.3. Work 3: Robotic Navigation
	3.4. Work 4 Navigation Tuning
	3.5. Work 5: RFID Technology

	4. PROPOSED SOLUTION
	5. CONCEPTS AND TECHNOLOGIES DESCRIPTION
	5.1. Robotics
	5.1.1 Robots

	5.2. Robotic Frameworks
	5.3. Warehouses
	5.4. Robots in Warehouses
	5.5. Sensors
	5.6. ROS – Robotic Operating System
	5.6.1 Why ROS
	5.6.2 ROS Distributions

	5.7. Turtlebot
	5.7.1 Turtlebot 2

	5.8. Unix – Linux – Ubuntu Operating System
	5.9. ROS Basics
	5.9.1 ROS filesystem
	5.9.2 Building packages - Catkin
	5.9.3 ROS packages
	5.9.4 ROS Graph concepts
	5.9.5 ROS Services and Parameters
	5.9.6 ROS publisher/subscriber
	5.9.7 ROS service/client
	5.9.8 ROS dependencies
	5.9.9 ROS basic commands
	5.9.10 ROS actionlib
	5.9.11 ROS parameters
	5.9.12 Slam
	5.9.13 ROS Simulations
	5.9.14 ROS Gazebo
	5.9.15 ROS RVIZ

	5.10. ROS Navigation Stack
	5.10.1 Transform Frames(tf) software library
	5.10.2 Sensor Sources
	5.10.3 Odometry Source
	5.10.4 Base Controller
	5.10.5 Map Server
	5.10.6 AMCL (Adaptive Monte Carlo Localization approach)
	5.10.7 Move Base
	5.10.8 Base Local Planner
	5.10.9 Global Planner
	5.10.10 Clear Costmap Recovery
	5.10.11 Rotate Recovery
	5.10.12 Costmap_2D
	5.10.13 nav_core
	5.10.14 Navfn
	5.10.15 Gmapping
	5.10.16 ROS Sending Simple Goals

	5.11. Turtlebot Basics
	5.11.1 TurtleBot Navigation Stack

	6. Turtlebot – ROS Implemented Algorithm for Navigation
	6.1. Explanation of the desired movement Turtlebot should perform
	6.1.1 Description of the Algorithm

	6.2. Steps performed by the navigation algorithm
	6.3. Schemes, Pictures of the algorithm, RVIZ and Gazebo
	6.4. RFID Antennas activation and deactivation

	7. RFID Technology
	7.1. RFID Antennas
	7.2. RFID Reader/Module
	7.3. MTI RFID Reader
	7.4. RFID Tags
	7.5. Configuration of RFID Antennas and Reader
	7.6. Measurements performed with RFID Antennas and Reader
	7.7. Integrating RFID Technology with Turtlebot 2
	7.8. Mounting RFID Antennas on top of TurtleBot
	7.9. Other issues related to RFID technology - Problems and concerns about RFID
	7.9.1 Materials interference with RFID technology
	7.9.2 Multiple interposed object with RFID tags
	7.9.3 Interference of RFID reader/antennas on multiple autonomous robots
	7.9.4 Plane and orientation of RFID tags in relation with the RFID reader/antennas
	7.9.5 Optimal Antenna and Reader Selection
	7.9.6 Privacy – Security
	7.9.7 RFID Health concerns

	8. LIDAR Technology
	8.1. RPLIDAR A2
	8.2. RPLIDAR versus Kinect
	8.3. Integrating RPLIDAR A2 with Turtlebot 2
	8.4. Problems Detected RPLIDAR

	9. EDL
	10. Apache Kafka
	10.1. Why Apache Kafka
	10.2. Apache Kafka for RFID tags publishing

	11. RFID TAG – POSITION – PATH – DATA COLLECTED
	11.1. Publishing RFID Tags on top of Apache Kafka publisher
	11.2. Publishing on a ROS Topic the collected RFID Tags, Goal, and Position
	11.3. ROS Logging
	11.4. Simple File Storage
	11.5. Simple hash filtering of collected RFID tags

	12. FINAL RESULT OF ALL SYSTEMS INTEGRATED TOGETHER
	12.1. Experiments
	12.1.1 Simulated world experiments
	12.1.2 Physical world experiments

	13. FUTURE WORK, IMPROVEMENTS AND ADDITIONS
	13.1. Better implementation and design of custom ROS path planner algorithm
	13.2. Experiment with other systems for better getting more complete experiment results and evaluation
	13.3. Experiment in different environments
	13.4. Additional sensors
	13.5. Intruders detection
	13.6. Positions with tags usage of two different tag types (1.products, 2.positioning)
	13.7. Using GPS or Wifi positioning of the robot in the warehouse
	13.8. A commercial completed Web/Mobile/Desktop Application for live monitoring, data filtering, revision of saved RFID data.
	13.9. Implementation of a complete package for RFID and ROS integration (if possible)
	13.10. Implementation of an algorithm for detection of what was expected and what was really detected in the warehouse.
	13.11. Implementation of an algorithm for automatic RFID antenna and tag direction detection.
	13.12. Automatic antenna activation and deactivation

	14. CONCLUSION
	15. ABBREVIATIONS - ARCTICS – ACRONYMS
	APPENDIX I
	I.1 Technologies used in this master thesis
	I.2 Linux 14.04 LTS
	I.3 Installation and Configuration of ROS Indigo Environment
	I.4 ROS Indigo Installation
	I.5 Turtlebot Gazebo
	I.6 Move Turtlebot in simulated world
	I.7 Creating Simulation of warehouse with Turtlebot in GAZEBO
	15.1. Create a map of previously created simulation
	I.8 Navigating in previously created map
	I.9 Create a map of a physical world
	I.10 Navigate in created map
	I.11 RVIZ
	I.12 Integrating RPLIDAR A2 with Turtlebot 2
	I.13 Mounting RPLIDAR A2 on top of Turtlebot 2
	I.14 ERROS – WARNING – PROBLEMS
	I.15 Running Turtlebot in physical world
	I.16 Giving permissions to USB MTI RFID RF Module
	I.17 Command for running Kafka in Linux
	I.18 Implemented Algorithms

	REFERENCES

