
A STORM ARCHITECTURE FOR FUSING IOT

DATA

A framework on top of Storm’s streaming

processing system

NATIONAL AND KAPODISTRIAN UNIVERSITY OF ATHENS
SCHOOL OF SCIENCE

DEPARTMENT OF INFORMATICS AND TELECOMMUNICATION

Zampouras A. Dimitrios

Supervisor: Associate Prof. Hadjiefthymiades Stathes

Internet of things - IOT

 By 2020, 25 billion devices will be connected to mobile
networks worldwide

 5G to support connectivity

 Huge amount of data generated Big Data

Traditional data processing systems prove
inadequate

Big data processing systems (1/2)

 Batch processing systems

Results

Batches of data

Data is afterwards
segmented into

batches that can be
quite large

Incoming data to the
system from user

generated events, log
events, sensors etc.

Data is
stored in the
database for
access at a
later point

Data
Storage

Batch Processor

The batch processor is
responsible for analyzing the

batches usually in a map
reduce fashion

Big data processing systems (2/2)

 Stream processing systems

Incoming data to the
system from user

generated events, log
events, sensors etc.

Stream Processor Results

Data is being
processed

individually, each time
it enters the system

 Apache Hadoop,

 based on the map-reduce model

 partition data into batches

 schedule and handle execution lifecycle of cluster

 Apache Spark,

 Hybrid processing system(batch & stream)

 Caching of intermediate results for faster processing

 Almost real time

Batch & Stream processing systems

Batch & Stream processing systems

 Apache Samza,

 real time stream processing system

 uses Apache Kafka and Hadoop YARN

 uses containers

 Apache Kafka Streams,

 A library that can perform stream processing on top of

Kafka queue

 output to topics

Batch & Stream processing systems

 Apache Flink,

 supports stream and batch processing,

 fault tolerant

 supports exactly-once-processing

Apache Storm

 Real-time computation system

 scalable and fault tolerant

 ability to implement many components in many

programming languages

 Creation of logical topologies, directed acyclic

graphs(DAGs) of computation

Storm core concepts - Components

 Spouts, responsible to fetch data into the system

 Bolts, the logical processing unit

 Spouts and bolts chained together form a logical

computation graph

Storm core concepts - Cluster management

 Nimbus – master node responsible for assigning tasks to

executors/worker nodes

 Cluster of apache zookeeper for coordination of

resources

 Worker nodes run a Supervisor daemon responsible for

executing tasks

Storm core concepts – Tuple

 Abstract data structure passed between spouts and bolts

 A wrapper of objects, an ordered list of values where

each value has a “name”, a label

Storm core concepts – Streams

 Streams are the core abstraction in Storm

 An unbounded sequence of tuples

 Every component in Storm(spout/bolt) is responsible for

creating one or more streams.

 A name needs to be given, otherwise “default”

 The declaration of a stream and its fields happen with the

declareOutputFields method

Example Spout

public class MessageSpout implements IRichSpout {

 private SpoutOutputCollector collector;

 @Override

 public void open (Map conf, TopologyContext context, SpoutOutputCollector collector) {

 this.collector = collector;

 }

 @Override

 public void nextTuple() {

 collector.emit(new Values(sender, recipient, message));

 }

 @Override

 public void declareOutputFields (OutputFieldsDeclarer declarer) {

 declarer.declare(new Fields("from", "to", “message"));

 }

}

Example Bolt

public class LogBolt implements IRichBolt {

 private OutputCollector collector;

 Logger logger = Logger.getLogger(LogBolt.class);

 @Override

 public void prepare (Map conf, TopologyContext context, OutputCollector collector) {

 this.collector = collector;

 }

 @Override

 public void execute (Tuple tuple) {

 logger.info(“Logging call from “ + tuple.getString(0) + “ to “ + tuple.getString(1)

 + “ message: “ + tuple.getString(2));

 }

 @Override

 public void declareOutputFields (OutputFieldsDeclarer declarer) { /*empty*/ }

}

Parallelism in Storm

 Parallelism hints :

 builder.setSpout(“word-spout”, new WordSpout(), 4);

 builder.setBolt(“count-bolt”, new WordCount(), 10);

We can indicate to Storm that we would like four instances of

WordSpout and ten instances of WordCount running in parallel

Stream Groupings

 A way to control how tuples are being sent between
instances of components

 Types of grouping(most important):

 Shuffle grouping, where tuples are being sent
randomly to instances

 Global grouping, the entire stream goes on a single
bolt instance

 All grouping, where the stream elements are copied
and sent to each of the bolt’s instances

 Direct grouping, where we decide the recipient of the
tuples

 Fields grouping, partition the stream based on some of
the fields

Fusion Box - Contextors

 Processing engine by chaining contextors

 Workflow processing, contextors create a graph of

computation

 Contextors – main building blocks that encapsulate:

 Logical processing – algorithm

 Each contextor performs a transformation of the

incoming data according to the algorithm to produce

the outgoing data

Contextor

Storm as a data fusion engine

Storm is not ready to become a data fusion engine.

Modifications/Requirements:

 A way to describe topologies, a DSL language

 A framework that will handle connecting and

parameterizing the interconnected components

 A complete set of algorithms that data scientists can use

 The user shouldn't need to code anything at all

Meet Apache Flux

Apache Flux is a framework for creating and deploying

Storm topologies

It supports:

 Topology description and deployment via YAML files

 Definition of spouts/bolts

To achieve all that it heavily relies on reflection, which uses

for creating the objects described

Essentially is really close to a bean engine

YAML topology example (1/3)

name: "yaml-topology"

config:

 topology.workers: 1

components:

spout definitions

spouts:

 - id: "spout-1"

 className: "org.apache.storm.testing.TestWordSpout"

 parallelism: 1

YAML topology example (2/3)

bolt definitions

bolts:

 - id: "bolt-1"

 className: "org.apache.storm.testing.TestWordCounter"

 parallelism: 1

 - id: "bolt-2"

 className: "org.apache.storm.flux.wrappers.bolts.LogInfoBolt"

 parallelism: 1

YAML topology example (3/3)

#stream definitions

streams:

 - name: "spout-1 --> bolt-1" # name isn't used (placeholder for logging, UI, etc.)

 from: "spout-1"

 to: "bolt-1"

 grouping:

 type: FIELDS

 args: ["word"]

 - name: "bolt-1 --> bolt2"

 from: "bolt-1"

 to: "bolt-2"

 grouping:

 type: SHUFFLE

Java equivalent topology example

public static void main(String[] args) throws Exception {

 TopologyBuilder builder = new TopologyBuilder();

 TestWordSpout testWordSpout = new TestWordSpout();

 builder.addSpout(“spout-1”,testWordSpout,1);

 TestWordCounter testWordCounter = new TestWordCounter();

 builder.addBolt(“bolt-1”, testWordCounter,1)

 .fieldsGrouping(“spout1”,newFields(“word”));

 LogInfoBolt logInfoBolt = new LogInfoBolt();

 builder.addBolt(“bolt-2”,logInfoBolt,1)

 .shuffleGrouping(“spout-1”);

 StormTopology topology = builder.buildTopology(…)

 topology.run();

}

Apache Flux – Properties (1/2)

 Component creation using classname
- id: "zkHosts“

 className: "org.apache.storm.kafka.ZkHosts“

 Constructor initialization
- id: "zkHosts“

 className: "org.apache.storm.kafka.ZkHosts“

 constructorArgs:

 - “localhost:2181”

 Object referencing

 - id: "zkHosts“

 className: "org.apache.storm.kafka.ZkHosts“

 constructorArgs:

 - ref : “localhost-string” # a component with id localhost-string must be

 # present

Apache Flux – Properties (2/2)

 Setting properties

 - id: "spoutConfig“

 className: "org.apache.storm.kafka.SpoutConfig“
 properties:
 - name: "ignoreZkOffsets“
 value: true
 - name: "scheme“
 ref: "stringMultiScheme“

 Calling methods

 - id: "bolt-1“

 className: "org.apache.storm.flux.test.TestBolt”
 configMethods: # public void withFoo(String foo);
 - name: "withFoo“
 args:
 - "foo"

Advancing the framework

 Flux enables us to create topologies without writing java
code

However …

 How can we encapsulate algorithms inside bolts?

 Spouts and bolts define fields and streams. How can we
abstract this?

We could …

 Make each algorithm extend the Bolt class

 Provide functions so that the user can specify fields and
streams at each component

Algorithm interface

Instead of making every algorithm an extension of Bolt class

we could enforce the Bolt class to hold an interface of an

algorithm:

Then the Bolt becomes:

public interface IAlgorithm {

 void prepare();

 void Values execute(Tuple incomingTuple);

}

Generic Bolt (1/3)

public class GenericBolt implements IRichBolt {

 IAlgorithm algorithm;

 public void setAlgorithm(IAlgorithm algo) {

 this.algorithm = algorithm;

 }

 @Override

 public void prepare(Map map,

 TopologyContext topologyContext,

 OutputCollector outputCollector) {

 this.algorithm.prepare();

 }

Generic Bolt (2/3)

 @Override

 public void execute(Tuple tuple) {

 values = algorithm.executeAlgorithm(tuple);

 emit(values);

 }

}

Generic Bolt (3/3)

Stream Definition (1/5)

 Whatever is declared at the declareOutputFields method

needs to be consistent to the stream declaration in the

YAML file

 The user would have to declare the fields for each bolt/spout

in the topology more than once and also declare the streams

 But the stream declaration also happens at the stream

definition section of the YAML

 Why should we force the user to repeat the stream definition

at each component?

For example….

Stream Definition (2/5)

spouts:

 - id: "spout-1"

 className: "org.apache.storm.testing.TestWordSpout"

 configMethods:

 - name: “declareStreamWithFields”

 args:

 - “stream-1”

 - “word”

 - name: “declareStreamWithFields”

 args:

 - “stream-2”

 - “word”

 parallelism: 1

Stream Definition (3/5)

streams:

 - name: "spout-1 --> bolt-1"

 from: "spout-1"

 to: "bolt-1"

 grouping:

 streamId: “stream-1”

 type: FIELDS

 args: ["word"]

 - name: "bolt-1 --> bolt2"

 from: "bolt-1"

 to: "bolt-2"

 grouping:

 streamId: “stream-2”

 type: SHUFFLE

Stream Definition (4/5)

streams:

 - name: "spout-1 --> bolt-1"

 from: "spout-1"

 to: "bolt-1"

 grouping:

 streamId: “stream-1”

 type: FIELDS

 args: ["word"]

 - name: "bolt-1 --> bolt2"

 from: "bolt-1"

 to: "bolt-2"

 grouping:

 streamId: “stream-2”

 type: SHUFFLE

Stream Definition (5/5)

 Essentially each bolt in the topology graph implements a

transformation of the incoming fields

 The algorithm is the main component that dictates the

transformation

public interface FieldTransformer {

 //applies a transformation to the incoming fields

 //returning the new fields

 public String[] transformFields(String incomingFields);

}

Stream Definition ((5+1)/5)

 Enable flux to connect the outgoing fields of the topology

by requesting each algorithm to supply its outgoing fields

 This is done by traversing the topology graph by doing a

Depth First Search

 Now the user does not need to specify the outgoing fields

at each step, the framework takes care of it

Spout Definition(1/6)

 Implement Mqtt and Kafka consumers in a similar fashion

 Things in common with every message queue consumer

 A connecting host,

 Port,

 The message topic,

 And a message scheme, so that we can interpret the

incoming messsages

Spout Definition(2/6)

mqttconfig:

 - id: "mqtt-config"

 className: "flux.model.extended.MqttSpoutConfigDef"

 brokerUrl: "tcp://localhost:1883"

 topic: "health_monitor/blood_pressure"

 clientId: “health_monitor"

 regex: ","

spouts:

 - id: "blood-spout"

 className: "consumers.MqttConsumerSpout"

 constructorArgs:

 - ref: "mqtt-config"

All the parameters are passed via a configuration class

Spout Definition(3/6)

kafkaconfig:

 - id: "kafka-config"

 className: "flux.model.extended.KafkaSpoutConfigDef"

 regex: ","

 zkHosts: "localhost:2181"

 topic: "health"

 zkRoot: "/health"

 clientId: "storm-consumer"

spouts:

 - id: "kafka-spout"

 className: "consumers.FusionKafkaSpout"

 constructorArgs:

 - ref: "kafka-config"

All the parameters are passed via a configuration class

Spout Definition(4/6)

- id: "keyValueSchemeasMultiScheme"

 className: "org.apache.storm.kafka.KeyValueSchemeAsMultiScheme"

 constructorArgs:

 - ref: "fusionScheme"

- id: "zkHosts"

 className: "org.apache.storm.kafka.ZkHosts"

 constructorArgs:

 - "localhost:2181"

Spout Definition(5/6)

- id: "spoutConfig"

 className: "org.apache.storm.kafka.SpoutConfig"

 constructorArgs:

 - ref: "zkHosts" # brokerHosts

 - "health" # topic

 - "/health" # zkRoot

 - "storm-consumer" # id

 properties:

 - name: "bufferSizeBytes"

 value: 4194304

 - name: "fetchSizeBytes"

 value: 4194304

 - name: "scheme"

 ref: "keyValueSchemeasMultiScheme"

spouts:

 - id: "kafka-spout"

 className: "org.apache.storm.kafka.KafkaSpout"

 constructorArgs:

 - ref: "spoutConfig"

Spout Definition(6/6)

 How is a spout going to resolve the fields and the

primitive types?

 Define each class type so that the primitives get resolved

mqttconfig:

 - id: "mqtt-config"

 className: "flux.model.extended.MqttSpoutConfigDef"

 brokerUrl: "tcp://localhost:1883"

 topic: "health_monitor/blood_pressure"

 clientId: "hello"

 regex: ","

 fields:

 - "id"

 - "value"

 - "timestamp"

 classes:

 - "java.lang.String"

 - "java.lang.Double"

 - "java.lang.Long"

Mapping of classes happens at the topology

creation.

We need the primitive types to be resolved to their

actual type so that we can rely on reflection on

the next algorithms(if ever is going to be needed).

Algorithms

 Shewhart, Cusum, Bayesian network

 Stream Merging algorithms

 Many more can be implemented

 Utility algorithms like threshold, median, max, min, field

filter etc…

 Goal is to provide a complete working set

Stream merging(1/2)

 Storm provides windowed bolts that can merge unbound

streaming data into finite sets

 Sliding window

 Tumbling window

 One important aspect is that we can merge those streams

based on a timestamp field that each element carries.

This significantly changes the output fields when a topology

contains such an algorithm(why?)

Stream merging(2/2)

 When merging streams into finite sets a significant

transformation happens.

 The previous scheme with the use of transform fields could

only support minor changes (add one fields, remove one

etc.)

Challenge

 Each algorithm can be chained with any one*

 Each algorithm applies a transformation to the fields

 Some algorithms apply a complete overhaul

 The next algorithm must know how to access the fields

“What kind of structuring should we impose in order for each

algorithm to be able to understand the incoming data?”

Meet the Fusion Tuples approach

 A fusion tuple is a data structure that can hold the

maximum amount of information

 A map of streams to the fields, along with some

metadata(field names, position and class)

 A merging algorithm is the most “severe” transformation

that can happen to the fields

public class FusionTuple {

 Map<String, List<Values>> valueMap;

 Map<String, List<Meta>> metaMap;

}

But comes with a cost

0

100

200

300

400

500

600

700

800

1 2 3 4 5 6 7 8 9 10

ti
m

e
 (

n
s)

Rounds

Benchmark

parsing

fusion tuple

Both

Improvise, adapt, overcome

 Supporting the fusion tuple scheme is costly, especially

when used to transfer a simple array of values

 Serialization adds more computational cost

 Whoops, some grouping techniques cannot be used

Could we use the fusion tuple scheme only when needed?

Solution no. 1

 We could divide the algorithms

to families according to

what data structure they emit

Solution no. 2

 When chaining two algorithms we have to prototype their

communication.

 The second algorithm expects incoming messages to

uphold a certain structure

 What if each algorithm was coupled with a “formatter”?

 The algorithm could “lend” the formatter to anyone who

would like to “speak” to them.

Solution no. 2 cont.

A
B
C

Algorithm

Formatters
A, B, C

Algorithm - A

Algorithm - B

Algorithm - C

Formatted
tuples

specifically for
each algorithm

Conclusions

 No approach can come without cons, or pros for that

matter

 More algorithms and scenarios that we would like to offer

are needed

 At any time when we might have to change our approach

when a new algorithm is presented

Questions?

“This is not the end. It is not even the beginning of the

end. But it is, perhaps, the end of the beginning.”

- Winston Churchill

