' AIAXYTOL YNOADMEMOE

ENAIAMEZO AOMEMIKO

@
=
B
A

AAAAAA
nnnnnnnnn

nnnnnnnnn

05Gi Ynnpeoieg et

YAIKO, AL, WM

OSGi Ynnpeaieg SVEnts

YAIKO, AL, IVM

[ NMEPIBAAADN ANANTYZHE EQAPMOIQN }

Documentation of the Application
Description Language

TECHNICAL REPORT

version 1.5

Vangelis Nomikos, and Kostas Kolomvatsos

NKUA TEAM

September 2009






Contents

(000 01 (=] 2} £ PP OPRPPPP 3
I [ o Yo [V ot f o o TP PR OPPPRPPPP 4
2. FUNAAmMENTAlS ..o e 4
2.1 To F=T 0N 1 =T PRSP UPPPPPPPRRN 4
2.2 D = T Y 1T PO UPPPPPPPRN 5
2.3 (0] T=T =1 (o] £ PR POPPP 6
2.4 (oL (=T (o] o PO UPPPPPPRN 7
2.5 DECIATATIONS coiiiiii ittt e e e an 9

3. CoNtrol StAatEMENTS .uviiiiiii i 11
3.1 AsSiIZNMENt StAtEMENT......ccoiiiiie e 11
3.2 Selection StatEMENTS ....cccvviiiiiiie e 12
3.2.1 Single-Selection Statement (if...elS€) ....ccceeeviieeiiiiii e, 12
3.2.2 Multiple-Selection Statement (switch) ......ccccccooeiiiiiiiiie i, 13

3.3 [teration StatEMENTS . ..uiiii it 14
3.3.1 WHhIle StatemMENT ......coiiiiiiiiiiiic e 14

3.4 Break Stat@mMENT .uuuuuuiiiiiiiiiiiiiiiiiiii bbb 15
3.5 INVOKE Stat@MEBNT . .uuuiuiiiiiiiiiiiiiii bbb bbb bbrbbbrbbbarrrares 15
3.6 Listen Statement (DEPRECATED!!! — DO NOT USE IT!H!) ..oooiiiiiiiiiiiiiieiis 16
3.7 Wait Statement ..., 17
4. Building an APPliCation .....coiiiiiiii i 17
4.1 Example APPliCation ... 19
APPENDIX A — ADL DefinitioN.....cccciiiiiiiiiiiiiiiiiieeeeeeeeeeeeeeeeeeeeeeeeeeeeee e 20
APPENDIX B — Getting started With ACC.........cccccveiiiiiiiie e 24

Y (=T =] o Vol =LA 24



1. Introduction

This document is the updated version of the first release of the Documentation of
the IPAC Application Description Language [2] and it is an attempt to describe the
syntax and some implementation details of the Application Description Language
(ADL). The ADL consists of a set of 42 EBNF-like rules describing structures and ele-
ments that the developer will be able to use in order to define a new IPAC Applica-
tion.

Using the openArchitectureWare framework [1], and more specifically the Xtext
framework, we take an auto generated parser and an Ecore meta-model for the de-
finition of the ADL. These components are necessary for the correct definition of an
IPAC application and the editors syntactic checking mechanism.

Moreover, some extensions are used to enrich our language and the derived meta-
model with useful functionalities. For example, we have defined a set of Java classes
that provide us methods used for checking purposes or in the content assist compo-
nent. Just to note one, the method getServices() is used in order to have access in
the service model and accordingly to retrieve all the available service names and me-
thods.

In the following sections, we try to present the syntax of all the available elements of
the ADL and give some practical examples.

2. Fundamentals

2.1 Identifiers

Rules for using identifiers are almost the same as in any common programming lan-
guage. A valid identifier is a sequence of one or more characters including under-
scores or digits. However, identifiers should not start with a digit or to be a reserved
word as well as an operator. Table 1 presents the reserved words of the ADL. These
words have special meaning and they can not be used for other purposes, for exam-
ple, as variable names.

In an IPAC application, identifiers can be used in declarations as well as in expres-
sions. Also, they can be used for the definition of the application name, the names of
entry points or they can represent service names and methods. In the definition of
ADL, identifiers are matched with the predefined “ID” type of the XText framework.
Hence, the appropriate syntax for identifiers is:

identifier : (‘a-zA-Z_’ (‘a-zA-Z_'0-9%);

where the symbol * denotes a list of zero or more appropriate characters. Some
valid examples could be: variablel, vectord4load, num_of _messages, _service2, etc.



Table 1. The reserved words of the ADL.

application invoke
as listen
blocked method
body nonBlocked
boolean onFault
break property
case set
const string
default switch
double true
else value
entry var
event vector
false wait
if while
int

2.2 Data Types

Data types are used to define the type and the range of values that are acceptable

for variables. ADL provides support for four primitive data types:

Table 2. ADL primitive data types.

Primitive Data Types Usage
int for integer values
double for real values
String for a sequence of characters
boolean corresponds to true or false values

The rule used in the ADL for the definition of data types is:

Enum TypeName :

"int" | "double" | “String" | "boolean";

At the current status, ADL does not support simple char values, short or long integers
and float values. However, the supported primitive data types can be easily ex-
tended by defining their names in the above described ADL rule.

For the manipulation of a collection of data, the ADL supports the “vector” data type.
Vectors are used to store multiple data values of primitive data types and all these
values should be of the same type. This complex data type is used especially in in-
voke statements (see Section 3.5). When methods of middleware services are called
by the application, vectors can be used as parameters. Moreover, if the method re-
turns a collection of values these can be stored in a vector variable of the same type.
Assignment statements (see Section 3.1) are also allowed between vectors (i.e. store
the values of a vector to another vector).



ATTENTION: There are no means provided by the ADL for the manipulation of spe-
cific values stored in a vector. This is going to happen through specific utility services
defined for such reasons.

2.3 Operators

An operator takes two operands and combines them in order to result a new value.
The ADL operators are divided into five categories: logical, equality, relational, addi-
tive and multiplicative operators. A logical operator produces a boolean value (true
or false) based on the logical relationship of its arguments. Equality and relational
operators evaluate the relationship between the values of the operands and gener-
ate a boolean result. Equivalence and nonequivalence work with all primitives data
types and are used for the creation of logical expressions. A relational operator is
used to compare the values of the operands given in the specific expression produc-
ing a boolean result. Expressions are fully described in Section 2.4. Additive and
multiplicative operators are used to build mathematical expressions which result a
specific value. Table 3 presents the operators that belong to each category.

Table 3. Categories of Operators.

Category Operator Meaning
an Logical conjunction
Logical Operators d og!c C(,) ,Ju C.IO
or Logical disjunction
. == Equal with
Equality Operators -
I= Not equal with
> Greater than
>= Great | th
Relational Operators reater or equa’than
< Less than
<= Less or equal than
+ Used for addition

Additive Operators
P - Used for subtraction

Used for multiplication

/ Used for division

Multiplicative Operators
P P Produces the remainder from integer

%
division (modulo)

ATTENTION: The operators “>”, “>=", “<”, “<=" cannot be applied for boolean values.

It should be noted that all the above described operators are binary. The ADL allows
the definition of negative values using the minus operator (“-“) in front of a constant
value. Examples concerning the usage of operators are given in the next section of
this report. An important point is that the ADL does not support the logical negation
operator (“not”). The developer should be aware of this issue in order to create ex-

pressions not containing logical negation.

In the Xtext model, rules defining operators use enumerations. These rules are:




Enum EqualityOperator: "==" [ "I=";

Enum RelationalOperator: "<=" [ ">=" [ "<" [ ">";

"o,
7

Enum AdditiveOperator: "+"

Enum MultiplicativeOperator: "*" | "/" | "%";

2.4 Expressions

Expressions are used for the combination of elements representing specific values.
They result a specific result which in the most of the cases is assigned to variables or
is used in other more complex expressions. In general, a typical form of an expres-
sion is:
<operand> <operator> <operand>

As mentioned before, we consider only binary operators. The expressions supported
by the ADL are as complex as the developer wants, however, without the usage of
parentheses. Their correctness is based on the order of operations. Operator prece-
dence defines how an expression is evaluated when several operators are present.
ADL has specific rules that determine the order of the evaluation. For example, for
mathematical operators, multiplication and division are evaluated before addition
and subtraction.

In order to define hierarchy in the operations in an expression we define the follow-

ing types of expressions:

e A generic “Expression” could be a “ConditionalExpression” followed by zero or
more pairs of the logical operator “or” and another “ConditionalExpression”.
Syntax : Expression:

ConditionalExpression (“or” ConditionalExpression)*

e A “ConditionalExpression” could be an “EqualityExpression” followed by zero or
more pairs of the logical operator “and” and another “EqualityExpression”.
Syntax : ConditionalExpression:

EqualityExpression (“and” EqualityExpression)*

e An “EqualityExpression” could be a “RelationalExpression” followed by at most
one pair of an “EqualityOperator” (see Table 3) and another “RelationalExpre-
sion”. Notice that an EqualityExpression consists of at most two relational ex-
pressions.

Syntax: EqualityExpression:
RelationalExpression (EqualityOperator RelationalExpression) ?

e A “RelationalExpression” could be an “AdditiveExpression” followed by zero or
more pairs of a “RelationalOperator” (see Table 3) and another “AdditiveExpres-
sion”.

Syntax: RelationalExpression:



AdditiveExpression (RelationalOperator AdditiveExpression) *

e An “AdditiveExpression” could be a “MultiplicativeExpression” followed by zero
or more pairs of an “AdditiveOperator” (see Table 3) and another “Multiplica-
tiveExpression”.

Syntax: AdditiveExpression:
MultiplicativeExpression (AdditiveOperator MultiplicativeExpression) *

e Finally, a “MuiltiplicativeExpression” could be a “PrimitiveElement” followed by
zero or more pairs of a “MultiplicativeOperator” (see Table 3) and another “Pri-
mitiveElement”.

Syntax: MultiplicativeExpression :
PrimitiveElement (MultiplicativeOperator PrimitiveElement) *

Some expression examples follow:
Example 1: The value of the variable “temperature” is less or equal than 35.0.
temperature <= 35.0

Example 2: The value of the variable “temperature” is greater than -20.0.
temperature >-20.0

Example 3: The value of the variable “humidity” not equal to 23.4.
humidity 1= 23.4

Example 4: The result of the multiplication of the value of the variable “temperature”
and the variable “error” is greater than the value of the constant “THRESHOLD”.
temperature * error >= THRESHOLD

Example 5: The value of “temperature” is less than or equal of 35.0 and the value of
“humidity” greater than 65.234.
temperature <= 35.0 and humidity >= 65.234

Example 6: Evaluate the expression 5 and check if the variable “isCritical” is equal to
true. Then evaluate the disjunction of these expressions.
temperature <= 35.0 and humidity >= 65.234 or isCritical == true

ATTENTION: The precedence of the operators in an expression is the precedence
utilized by the Java programming language.

Example 7: Multiply the “oldTemperature” with 0.2 and the “newTemperature” with
0.8 and then add the results.
oldTemperature * 0.2 + newTemperature * 0.8

Example 8: Evaluate the expression in 7 and check if the result is less than or equal to
the value of the “threshold” multiplied by 1.20.
oldTemperature * 0.2 + newTemperature * 0.8 <= threshold * 1.20




Example 9: Evaluate the following mathematical expression. Multiplications go first
and then additions.
tWeight * temperature + hWeight * humidity + wWeight * windSpeed

ATTENTION: However, the following cannot be represented using the ADL:
0.8 * (temperature * tWeight + humidity * hWeight)

The equivalent in ADL could be

0.8 * temperature * tWeight + 0.8 * humidity + 0.8 * hWeight

2.5 Declarations

In the declaration part of each application (see Section 4) the developer can define
variables, constants and vectors. Constants cannot change value during the execu-
tion of the application and their definition has the following form:

Syntax:
const <constantName> as <type> value <constantValue>

Hence, the declaration of a constant requires a valid name, a data type (as they de-
fined in the Section 2.2) and a value. The type of the “constantValue” should match
with the “type” defined in the declaration. For this, a specific checking mechanism is
defined. It should be noted that every time the developer defines a constant the
checking mechanism ensures that the constant is not previously defined. In such
cases the line containing the declaration is underscored and an error message ap-
pears in the screen when the developer places the mouse on the declaration line.
Some examples of constant declarations follow:

Example 10: Define a boolean constant with name “isDeployed” and value equal to
true.
const isDeployed as boolean value true

Example 11: Define a string constant with name “serviceName” and value equal to
“something”.
const serviceName as String value “something”

Example 12: Define an integer constant with name “numOfSensors” and value equal
to 64.
const numOfSensors as int value 64

Example 13: Define a double constant with name “temperatureThreshold” and value
equal to 41.223.
const temperatureThreshold as double value 41.223

The second case of declarations involves the variable declarations. The general form
of a variable declaration is:




Syntax:
var <variableName> as <type> [value <constantValue>]

Hence, we can define the name and the type of a variable and optionally an initial
value could be assign. In contrast to the most programming languages, multiple va-
riables cannot be defined in the same line. The developer should devote one decla-
ration line for each variable. Some examples of variable declarations are presented
below:

Example 14: Declare a double variable with name “threshold”.
var threshold as double

Example 15: Declare a string variable with name “message”.
var message as String

Example 16: Declare an integer variable with name “numOfiterations” and initialize
it to the value 10.
var numOflterations as int value 10

Example 17: Declare a double variable with name “fireProbability” and initialize it to
the value 1.0.
var fireProbability as double value 1.0

Example 18: Declare a boolean variable with name “canBeDeployed” and initialize it
to the value true.
var canBeDeployed as boolean value true

COMMENT: When an integer or double variable is declared without initial value, the
value zero (0) is assigned by default.

Concerning the checking mechanism used for this part of declarations involve the
name checking and the type of the value if the optional part is used.

Finally, the only available complex type, that the developer can use, is the vector
declaration. A vector is used for storing a collection of primitives data types of the
same type. The general form of the vector declaration is:

Syntax:
vector <vectorName> as <type>

Some examples of vector declarations are presented below:

Example 19: Declare a vector variable of double elements with name “temperatures”.
vector temperatures as double

Example 20: Declare a vector variable of string elements with name “sensorsNames”.




vector sensorsNames as String

Concerning multiple vector declarations it stands the same as for variables. Every
vector is also declared in a separate line.

3. Control Statements

Before defining an IPAC Application, the developer must have a thorough under-
standing of the problem and a carefully planned approach to solving it. When writing
the application, he also must understand the elements and structures are available
and employ proven program-construction techniques. In this section, we present
the basic control structures that the ADL supports. The most common statements
are assignment statements, selection statements, iteration statements, and invoke
statements. A more detailed analysis follows in the following Sections.

3.1 Assignment Statement

Assignment is performed with the operator = . It means “Take the value of the right-
hand side (often called the rvalue) and copy it into the left-hand side (often called
the Ivalue).” An rvalue is any constant, variable, expression or the result of an invoke
statement. An lvalue must be a distinct, named variable or vector. The general syn-
tax of an assighment statement is:

Syntax:
set <variable> = < Constant | Variable | Expression | Invoke Statement>

where variable is the name of a predefined simple or vector variable.

ATTENTION: The type of the left and the right side of the assignment statement
must be the same!

Some examples of assignment statements are presented below:

Example 21: Assign to the variable “query” the value “This is a dummy query”.
set query = “This is a dummy query”

Example 22: Assign to the variable “temperature” the value 35.6
set temperature = 35.6

Example 23: Assign to the variable “temperature” the value of the constant “THRE-
SHOLD”.
set temperature = THRESHOLD

Example 24: Assign to the variable “temperature” the result of the expression “tem-
perature * 1.2 + 3.0”.




set temperature = temperature * 1.2 + 3.0

3.2 Selection Statements

An IPAC application uses selection statements in order to choose among alternative
courses of action. ADL supports two types of selection statements. The if...else
statement (single-selection) and the switch statement (multiple-selection). Note that
the single selection statement can also be used for multiple-selection purposes
through nested if ... else statements.

3.2.1 Single-Selection Statement (if...else)

The if...else statement is the most common way to control program flow. This kind of
statement allows the developer to specify an action to perform when the condition
is true and a different action when the condition is false. The general form of such a
statement is:

Syntax:
if (expression) {
statements
}
[else {
statements

1

The expression must result a boolean value. The statements list should contain zero
or more statements. Also, note that the else part of the statement is optional. If an
else part is missing an indicated action is performed only when the condition is true;
otherwise, the action is skipped.

Some examples of single selection statements are presented below:

Example 25: Check if the value of the variable “temperature” is greater or equal than
the value of “threshold” and if this is true assign to the variable “alerted” the value
true (assume that the variable alerted is of boolean type).

if (temperature >= threshold) {
set alerted = true

}

| ATTENTION: The braces are mandatory even if only one statement follows!

Example 26: Check if the variable “isCritical” is equal to true. Then assign to the vari-
able “probability” the value 1.0 otherwise assign the value 0.2.

if (isCritical == true) {
set probability = 1.0



else {
set probability = 0.2
}

3.2.2 Multiple-Selection Statement (switch)

The switch statement allows the developer to specify an action to perform under
multiple conditions. The syntax of a switch statement is:

Syntax:
switch (expression) {
caseStatements
[defaultStatement]

The expression should be evaluated to integer. The default statement is optional.
The syntax of a case statement is:

Syntax:
case intValue:

statements

ATTENTION: At the current status, in a switch statement only integer values are al-
lowed!

Some examples of the switch statement are presented below:

Example 27: Check the value of the variable “criticality” and set the appropriate val-
ue to the variable named probability.

switch (criticality) {

case O:
set probability = 0.1
break

case 1:
set probability = 0.5
break

case 2:
set probability = 1
break

Notice that each case ends with a break statement (section 3.4), which causes execu-
tion to jump to the end of the switch body. This is the conventional way to build a
switch statement, but the break is optional. If it is missing, the code for the following
case statements executes until a break is encountered.




Also, notice that the developer can succeed the desired functionality of the above
example with an alternative approach by using nested if...else statements. This ap-
proach is described below for the Example 27:

if (criticality == 2) {
set probability = 1.0

}
else {
if (criticality == 1) {
set probability = 0.5
}
else {
set probability = 0.1
}
}

3.3 [Iteration Statements

An iteration repeats the execution of a number of statements until the controlling
expression is evaluated to false. The expression is evaluated once at the beginning of
the loop and every time an iteration is finished. The ADL supports only one type of
iteration statement, the while-statement.

3.3.1 While Statement

The while statement allows the developer to specify that an application should re-
peat some actions while the condition remains true. The basic syntax of such a
statement is:

Syntax:
while (expression) {

statements

Some examples of while statements are presented below:

Example 28: Assume that the variable “temperature” has been initialized to the value
10. Increase the temperature per 2.5 in each iteration until it exceeds the threshold of
40.

while (temperature <= 40) {
set temperature = temperature + 2.5

Note that, a break statement could be used in a while statement in order to stop ex-
ecution.

ATTENTION: We do not support the statement “for” the “while” statement can be




| used in cases where the number of iterations is predefined.

3.4 Break Statement

The break statement could be used only in an iteration or a switch statement. A
break statement is used to alter the flow of control. When executed, it causes im-
mediate exit from that statement. Execution continues from the first statement after
the control statement. For a break statement, the developer could simply use the
reserved word “break”.

3.5 Invoke Statement

The IPAC middleware consists of a set of services each of them providing a set of
public methods. At the definition of a newly created IPAC application, the developer
is able to use these services and methods in order to give to the application the de-
sired functionality. The developer gains access to these elements by using invocation
statements. The basic syntax of an invocation statement is:

Syntax:
invoke ServiceName {

method MethodName (parameterList)
[ onFault { statements } ]

The onFault structure is optional and it is executed when an error occurs in the in-
voke statement.

Some examples of invoke statements are presented below:

Example 29: Let’s invoke the method “getNumOfSensors” of the “StorageService”.
invoke StorageService {
method getNumOfSensors ()

Example 30: Retrieve the top-5 temperatures from the “StorageService”.
invoke StorageService {
method getTopKTemperatures (5)

Example 31: Invoke the method “getNumOfSensors ()” of the “StorageService” and if
an error occurs invoke the “soundAlert()” method of the “UlService”.
invoke StorageService {
method getNumOfSensors ()
onFault {
invoke UlService {
method soundAlert()



}

We can also assign to a variable the result of an invocation statement.

Example 32: Assign to the variable “temperature” the return value of the “getTem-
perature” method of the “StorageService”.

set temperature = invoke StorageService {
method getTemperature()

}

Example 33: Assign to the vector variable “resultSet” the return value of the invoca-
tion of the “query” method of the “ReasonerService”.

set resultSet = invoke ReasonerService {
method query (“Here goes a query”)

}

ATTENTION: The type of the variable and the return type of the value of the speci-
fied method must be the same!

ATTENTION: A list with all the available services and their corresponding methods
which they will be available to the developer.

3.6 Listen Statement (DEPRECATED!!! — DO NOT USE IT!!!)

A listen statement allows the developer to specify what events an application is able
to handle and accordingly what actions are going to be performed when the event is
fired. The syntax of a listen statement is:

Syntax:
listen <eventName> <eventType>

The “eventName” specifies one of the available events which have been defined in
the application profile by using the application profile editor. The “eventType” speci-
fies the type of the event; “blocked” or “nonblocked”. If a listen statement uses the
“blocked” type, the execution of the IPAC application will be suspended until the
event is fired, implementing a synchronous event handling. Otherwise, when the
type of the event is “nonBlocked”, the execution of the IPAC application will con-
tinue until the event is fired (asynchronous event handling).

ATTENTION: For each listen statement the appropriate EventHandler block must be
defined before the body part. An event entry point contains the actions to be per-
formed when an event is fired.




Some examples of listen statements are presented below:

Example 34: The application should be able to handle “fireEvents”. It should suspend
its execution until this event will be fired.
listen fireEvent blocked

Example 35: The application should be able to handle “fireEvents”. It should con-
tinue its execution and when this event is fired the event handler will be executed.
listen fireEvent nonBlocked

Comment: However, event handling is going to be finalized in the next realease of
this report.

3.7 Wait Statement

A wait statement allows the developer to specify a time interval for which the appli-
cation suspends its execution. The syntax of such a statement is:

Syntax:
wait <numOfSeconds>

Example 36: The application must suspend its execution for 5 seconds.
wait 5

4. Building an Application

In this Section, we explain the basic architecture of a newly created IPAC application.
The basic template of an application is listed in Listing 1.

application name {
Declarations’ Definition Part

EventHanders’ Definition Part
EntryPoints’ Definition Part
body {

// Here goes the application logic.

Listing 1: The basic architecture of an IPAC application.

Each IPAC application consists of four distinct parts: the declaration, the event han-
dling, the entrypoints’ definition and the body part. After the definition of the appli-
cation name, the developer has the opportunity to define the constants and vari-
ables that the application is going to use. After the declarations, the EventHandlers’




part follows. In this part, the developer specifies a set of statements that will be exe-
cuted when a specific event is fired. Moreover, a set of properties can be defined in
order to store values taken by events. For each application specific event the corre-
sponding event handler must be defined. When an event is fired, the appropriate
event handler is executed. As far as the entry points is concerned, the definition of
them is not fully supported until now but will be used in a future version of the lan-
guage. It should be noted that all the aforementioned parts are optional and should
be used only when they are necessary.

Comment: The definition of entry points is, for now, similar to the definition of me-
thods to common programming languages.

The basic syntax of an event handler is described below:

Syntax:
event name {

eventAssighnmentStatements
statements

As depicted above, a list of eventAssignmentStatements are used in the definition of
an event handler. Some events (especially Ul events) carry specific information that
should be manipulated by the application. Such a statement is used for this purpose.
The basic syntax of an EventAssignmentStatement follows:

Syntax:
property variableReference value propertylD

Note that the field of “propertylD” takes values of a predefined list of properties
which is related to the corresponding event. These values are available through the
content-assist mechanism of the ACE editors.

An example of the definition of an event handler follows:

Example 37: When a fire event is fired, invoke the “soundAlert” method of the “UIS-
ervice”.
event fireEvent {
invoke UlService {
method SounAlert()

After the definition of entry points, the developer can proceed to the creation of the
core application logic. All application statements are defined in the “body” part and
they implement the desired functionality. Details of all the available statements are
described in Section 3. As we can see in the Listing 1, braces are used to define the




beginning and the end of a body part. The developer could use tabs in order to jus-
tify the application code and this way to be easier the optical control of the workflow.
Finally, we should note that comments in the application workflow can be placed
using the symbols “//” for one line comment and the symbols “/*” and “*/” for mul-
tiple line comments.

4.1 Example Application

This is a simple example of an IPAC application. The logic of this application simply
shows how the developer can use some of the ADL elements described in this report.

application DummyApp_5643 {
var threshold as int value 0
vector resultSet as double

event FireEvent {
invoke uiService {
method displayAlert(0, “Fire detected”)

}
}
body {
while ( threshold < 5) {
set resultSet = invoke reasonerService {
method query ( "A query 1")
}
wait 5
set threshold = threshold + 1
}
}



APPENDIX A — ADL Definition

This appendix contains the definition of the ADL in terms of EBNF-like rules. At the
current status, the ADL is defined by a set of such rules.

Application:
kApplication=""application”™ appName=ID "{"
(declarations+=Declaration)*
(eventHandlers+=EventHandler)*
(entryPoints+=EntryPoint)*
body=Body
"

// Specifies the code to be executed for an entry or an event.
EventHandler:
"event" name=ID "{"
(eventAssignments+=EventAssignmentStatement)*
(eventStatements+=Statement)*

B

EventAssignmentStatement:
"property" assRef=[VariableDeclaration] "value"™ handler-
Ref=[EventHandler] "." propld=ID;

EntryPoint:
"entry" name=ID "{"
(entryStatements+=Statement)*

"
Body:
“"body" "{"
(statements+=Statement)*
"

// ***** DECLARATIONS ***** //

// //
// Abstract rule. Useful for linking references!
Declaration:

ConstantDeclaration | VariableDeclaration | VectorDeclaration;

ConstantDeclaration:
const” name=ID "as" type=TypeName "value™
cValue=ConstantValue;

VariableDeclaration :
"var' name=ID "as" type=TypeName (“‘value"
cValue=ConstantValue)?;

VectorDeclaration :
""vector' name=ID "as" type=TypeName;

Enum TypeName :
int="int" | double="double™ | string="String" | boo-
lean=""boolean";

// ***** CONSTANT VALUES ***** //
ConstantValue:



IntegerLiteral | StringLiteral | DoubleLiteral | BooleanLit-
eral;

IntegerLiteral:
intValue=INT;

StringLiteral:
strValue=STRING;

BooleanLiteral:
booleanValue=BooleanEnum;

Enum BooleanEnum:
true="true" | false="false";

DoubleLiteral:
doubleValue=DOUBLE;

// A native rule is a lexer rule!
Native DOUBLE:
u(-o- . -9-)*- _ -(-0- . -9-)+||;

// Native SL_COMMENT:

// FFF** STATEMENTS ***** //
// //
Statement:

AssignmentStatement | IfStatement | SwitchStatement | In-
vokeStatement | ListenStatement | WaitStatement | IterationStatement
| BreakStatement;

IfStatement :
“iFt (" ifExpression=Expression ‘)" {"
(ifStatements+=Statement)™*

(Ilelsell Il{ll
(elseStatements+=Statement)*
Il}ll)?;
SwitchStatement :

“"switch™ (" switchExpression=Expression ") "{"
(caseStatements+=CaseStatement)*
(defaultStatement=DefaultStatement)?

}"1
// ATTENTION: Only INT values in CaseStatements!
CaseStatement:
"case" cValue=INT ":" (caseStatements+=Statement)™;
DefaultStatement:

"default:" (defaultStatements+=Statement)™;

ListenStatement :
"listen” eventName=[EventHandler] eventType=EventType;

Enum EventType :
blocked=""blocked"™ ]| nonBlocked=""nonBlocked";

// ATTENTION: Java style! Space seperator at the parameter list!
InvokeStatement:



""invoke"™ componentName=I1D ""{"
"method"™ methodName=1D
primitiveEL=PrimitiveElementList
(faultStatement=Faul tStatement)?

B

PrimitiveElementList :
(" (primitiveElements+=PrimitiveElement ('," primitiveEle-
ments+=PrimitiveElement)*)? ")

// Like try-catch block. The code to be executed.
FaultStatement :
"onFault™ "{" (fStatements+=Statement)* "}';

// ATTENTION: A Declaration reference may be a constant declaration.
Check is needed!!!
// Also a PrimitiveElement is allowed as right operand. Checks needed
(possible?) or sth more simplified.
AssignmentStatement:

"set" assRef=[Declaration] "=" (invokeState-
ment=InvokeStatement | expression=Expression);
// primitiveElement=PrimitiveElement deleted as right operand

// e.g set vl to 47 ??7?

IterationStatement:
"while”™ (" whileExpression=Expression )" "{"
(whileStatements+=Statement)*
Il}ll;

BreakStatement:
"break';

WaitStatement:
"wait'" secs=INT;

// ***** PRIMITIVE ELEMENTS ***** //
// ATTENTION: Usage of the abstract rule! Vector reference is al-
lowed!
PrimitiveElement:

peRef=[Declaration] | cValue=ConstantValue;
// (cValue=ConstantValue | varValue=VariableReference |
constValue=ConstantReference | vectorValue=VectorReference);

//VectorReference:
// indexedVecRefName=IndexedVectorReference | vecRef-
Name2=[VectorDeclaration];

//1IndexedVectorReference:
// vecRefName=[VectorDeclaration] (" index=INT ")";

// F*F*F** EXPRESSIONS ***** //
Expression:

condAndExpr=ConditionalAndExpression ('or" optCondAn-
dExpr+=Conditional AndExpression)™*;



ConditionalAndExpression:
equalExpr=EqualityExpression (“'and" optE-
qualExpr+=EqualityExpression)*;

EqualityExpression:
relExpr=RelationalExpression (equalOps+=EqualityOperator
optRelExprs+=RelationalExpression)?;

RelationalExpression:
addExpr=AdditiveExpression (relOps+=RelationalOperator optAd-
dExprs+=AdditiveExpression)?;

AdditiveExpression:
multiExpr=MultiplicativeExpression (addOps+=AdditiveOperator
optMultiExprs+=MultiplicativeExpression)™*;

// ATTENTION: PrmitiveElement or sth else more limited?
MultiplicativeExpression:

primElem=PrimitiveElement (multOps+=MultiplicativeOperator
optPrimElems+=PrimitiveElement)*;

Enum EqualityOperator:
equalOp="==" | unEqualOp=""1="";

Enum RelationalOperator:
leOp=""<=" | geOp=">=" | 10p="<" | gOp="">";

Enum AdditiveOperator:
addOp=""+" | minusOp=""-";

Enum MultiplicativeOperator:
multOp=""*" | divOp=""/" | modOp=""%"";



APPENDIX B — Getting started with ACC

In order to start using the IPAC application creation component you have to follow
the following steps:

1.

Visit the url
http://oaw.itemis.com/openarchitectureware/language=en/2837/downloads
and at the section “Eclipse 3.4.2 Ganymede + openArchitectureWare 4.3.1”
download the environment for the platform of your choice.

Unzip the file with the distribution to a destination folder. This folder will be
the installation folder of your oAW Eclipse environment.

Download from the SVN of the IPAC project
(http://ipad.di.uoa.gr/svnrepo/ipac) the five deployable plug-ins and all the
necessary external files. All the above are located under the SVN folder ACC/
NKUA_ACC_v1/PLUG-INS.

Go to the installation folder of your oAW Eclipse environment, and put the
five deployable plug-ins into the plugins folder.

Copy the folder IPAC_ROQT at the hard-disk C: of your computer.

Start the oAW Eclipse environment (if it is already open, just restart it).

ATTENTION: At the current status of the development, the oAW Eclipse environment
and all the extended features (plug-ins, external files) have been tested only on Mi-
crosoft Windows environments (XP and Vista). Support for other OS will be a next

step.

In order to define a new IPAC project, the developer should follow the following
steps:

7.

8.
9.

Choose from the main menu of the environment the options “File = New 2>
Project = Xtext DSL Wizards = ipacadl Project” and then click the “Next”
button.

Specify the project name and press the finish button.

At the left part of the eclipse workbench, all the necessary files are created.
Double click, the file “model.adl” under the folder src.

10. The file “model.adl” opens with the textual editor and the developer is ready

to start writing the application.

11. At any time, the developer can use the auto-completion functionality of the

editor by pressing the combination of keys Ctrl+Spacebar.

A more detailed guide describing the functionality of ACC will be available at the next
release of this report.

References

(1]
(2]

http://www.openarchitectureware.org/

V. Nomikos and K. Kolomvatsos, “Documentation of the IPAC Application De-
scription Language”, Technical Report, version 1.0, Department of Informatics
and Telecommunications, University of Athens, May 2009.







