
Path Prediction through Data Mining

Theodoros Anagnostopoulos1, Christos Anagnostopoulos1, Stathes Hadjiefthymiades1, Alexandros
Kalousis2, Miltos Kyriakakos1

1Pervasive Computing Research Group, Communication Networks Laboratory, Department of
Informatics and Telecommunications, University of Athens, Panepistimiopolis, Ilissia, Athens

15784, Greece, tel: +302107275127, e-mail: {thanag, bleu, shadj, miltos}@di.uoa.gr
2Artificial Intelligence Laboratory, Department of Computer Science, University of Geneva,

Uni-Dufour, Geneva 1211, Switzerland, tel: +41223797630,
e-mail: Alexandros.Kalousis@cui.unige.ch

Abstract - Context-awareness is viewed as one of the most
important aspects in the emerging ubiquitous computing
paradigm. Mobile applications are required to operate in
pervasive computing environments of dynamic nature. Such
applications predict the appropriate context in their
environment in order to act efficiently. A context model,
which deals with the location prediction of moving users, is
proposed. Such model is used for trajectory classification
through Machine Learning techniques. Hence, spatial and
spatiotemporal context prediction is regarded as context
classification based on supervised learning. Finally, two
classification schemes are presented, evaluated and
compared with other ML schemes in order to support
location prediction and decision-making.

Key words – machine learning, data mining, location prediction

I. INTRODUCTION

In order to render applications and services intelligent
enough to support modern users everywhere / anytime
and materialize the so-called ambient intelligence,
information on the present context of the user has to be
captured and processed accordingly. Such information
may refer to the user’s position, time, physical properties
like temperature or other general parameters (e.g., the
specific devices that the user carries, application context).
The efficient management of contextual information
requires detailed and thorough data modeling along with
specific processing, reasoning and prediction capabilities.

A computing environment, which is based on such
pervasive infrastructure, is called Pervasive Computing
Environment (PCE). In a PCE, diverse contexts can
appear (e.g., user is in his/her office, walking outdoors,
driving a car). However, context - awareness allows an
entity to adapt to its environment thus offering a number
of advantages and possibilities for new applications. One
of the more intuitive capabilities of such applications is
their proactivity. Predicting user actions and contextual
parameters enables a new class of applications to be
developed. Spatiotemporal prediction can be used to
improve resource reservation in wireless networks and
facilitates the possibility of providing desired location
based services by preparing and feeding them with the
appropriate context in advance [22]. Predictive context-
aware applications can perform context pre-evaluation
aspects introducing innovative proactive services (e.g.,
alerts related to traffic conditions, certain information pre-
fetching and triggering actuation rules in advance).

The concept of predicting spatial context with
Machine Learning (ML) algorithms and techniques is
quite novel. ML, in its broadest sense, can be
considered as the study of algorithms that improve
automatically through experience. It has a wide
spectrum of applications including search engines and
medical diagnosis. One of the most typical tasks in
machine learning is the discovery of patterns from
large datasets. The Data Mining (DM) sub-field of
ML handles such data discovery. ML tasks can be
roughly organized into: supervised learning (e.g.,
classification and regression) and unsupervised
learning (e.g., clustering). In this paper, we exploit
classification in order to predict contextual
information. In classification, training data are most
often represented as attribute-value vectors, though
other complex structures can be also considered (e.g.,
sets and graphs). Each training data is assigned to a
specific class from a fixed set of classes (e.g.,
symbolic locations). The goal of the classification task
is the prediction of the class of a given unseen data.

We propose a context model that deals with location
prediction of moving users. The proposed model
predicts the next movement of a mobile user with a
certain moving profile and history of movements.
Furthermore, temporal context (e.g., morning, noon,
afternoon and night) is also incorporated in the
proposed model. Hence, the representation of a user
can include both spatial and temporal information.
Two classification schemes are introduced in order to
support location prediction. These schemes are
evaluated with three DM algorithms. Finally, the
classification schemes are also compared with three
non-DM schemes for location prediction, by means of
prediction accuracy.

The paper is organized as follows: Section II reports
certain supervised learning schemes used for context
classification while, in Section III a context
representation model taking into account the current
and historical user context is proposed. Section IV
discusses the application of the proposed model in a
PCE using specific ML classification schemes. In
Section V, we evaluate the discussed context model
with both DM and non-DM classifiers while, Section
VI reports prior work on that research area. Finally
Section VII concludes the paper.

II. MACHINE LEARNING AND CLASSIFICATION

Classification is the task of learning from examples,
which are described by a set of attributes and a class
attribute. The result of learning is a classification model
that is capable of accurately predicting the value of the
class attribute of unseen examples based only on the
values of the attributes. For instance, a user is highly
likely jogging if the following conjunction of certain
attributes holds true at a specific time t, that is, “IF
location(user, t) IS outdoors AND speed(user, t) IS high
AND respiratory-level(user, t) IS high THEN context(user,
t) IS highly likely jogging”. Specifically, a training set is
fed to a classification algorithm and the result is a
classification model. This classification model can then be
applied to new unseen and unlabeled instances in order to
predict their class labels. A crucial element in the whole
process is the quality of the predictions that the
classification model produces. In order to estimate this
quality usually a test phase is also adopted. One of the
most popular measures of classification performance is
accuracy, which is the percentage of correctly predicted
instances from a test set.

Various algorithms exist for the task of classification.
Some indicative algorithms are the following [1]:
inferring rudimentary rules (e.g., 1R), statistical learning
(e.g., naïve Bayes, support vector machines), decision tree
induction (e.g., C4.5), classification rules (e.g., Ripper),
instance-based learning (e.g., k-nearest neighbors) and
nonlinear models (e.g., multi-layer perceptrons).
Obviously, there is no single classification algorithm that
works best independently of the application domain and
problem. We have experimented with three different
classification algorithms, which were initially selected for
their good alignment with the domain assumptions (i.e.,
spatiotemporal context). Finally, the decision tree
induction algorithm was selected for our experiments
since it demonstrates satisfactory performance in the
discussed domain.

A. Bayesian algorithms

Bayesian classification algorithms are statistical
learning algorithms based on the Bayes theorem [8]. The
Naïve Bayes algorithm, which is a simple Bayesian
classifier, demonstrates a comparable performance with
decision trees and neural network algorithms [2]. It
assumes that, the effect of an attribute value on a given
class is independent of the values of the other attributes.
This assumption is known as the “class conditional
independence”.

B. Decision-Tree-Based algorithms
A decision tree consists of internal decision nodes and

leaves. Each node corresponds to a test function on a
given attribute of the learning examples, each of the
different possible outcomes of the test function leads to a
different branch of the decision tree. Given an example
that arrives to a specific node the corresponding test is
applied on the example and the example is sorted to the
appropriate branch according to the result of the test. The

process starts at the root of the tree and is repeated
recursively until a leaf node is reached. At that point
the class label predicted is the label associated with
the specific tree. A leaf node defines a region in the
input space instances falling within that region assume
the same class label. The hierarchical placement of
decisions allows a fast localization of the region in
which a specific example belongs, [3]. Decision Tree
learners (C4.5 is a well known representative
classifier [4]) use heuristic hill climbing, employing
heuristics such as Information Gain, Information Gain
Ratio and Gini Index, to select the most appropriate
test at each decision node The result of a decision-
tree-based algorithms is a decision tree, which can be
easily transformed into a set of classification rules,
[4].

C. Rule induction for classification

Rule-induction behaves similar to tree-induction.
Actually, rule-induction performs a depth-first search,
in the data graph and generates one path (represented
as a classification rule) [3]. Rules are constructed one
at a time. Each rule is a conjunction of conditions on
discrete or numeric attributes and such conditions
optimize some criterion (e.g., minimize entropy). A
rule is said to “cover” an example if that example
fulfils all the conditions of the rule. Once a rule is
constructed it is asserted to the rule base. A
representative rule-induction algorithm, that we
experiment with, is the RIPPER [6], which stands for
Repeated Incremental Pruning to Produce Error
Reduction.

III. CONTEXT REPRESENTATION

The contextual information considered for location
prediction is the spatial and temporal context of the
user. Such contexts refer to the antecedent-part of the
classification rules while the consequent-part of these
rules is the spatial context. The spatial context refers
to (i) the current user location, (ii) the history of user
movements (represented by a vector of time-ordered
transitions between locations) and (iii) the spatial
representation into cells and clusters of cells. The
temporal context refers to (i) the user residence time
in a location, (ii) the time stamp of a transition
occurrence and (iii) the taxonomy of user trajectories
in specified time slots.

The discussed model defines the user moving space
i.e., current location, as the basic context attribute for
classification. The user roams through a cellular
network thus, the network cell represents a location.
The model also represents the spatial context as a
cluster of neighboring cells resulting to a hierarchical
spatial context representation. Various categories for
clustering n cells can be used, n > 0. Each cell
belonging to a cluster has its unique identifier, cell-id,
while the unique identifier of the cluster, cluster-id, is
that of its central cell.

Moreover, the model uses temporal context and examines
the possibly enhancement in the prediction process. Such
context refers to the occurrence time of a transition
between locations (cells or clusters). The time duration of
the day is split in four slots: morning, noon, afternoon and
night. Each time slot relates to a specific time interval [a,
b], where a and b represent the start- and the end-time
stamps of the slot, respectively (e.g., the morning slot
relates to the [9a.m., 12a.m.] time interval). The residence
time of a user in each visited cell [5] is accumulated and
categorized into specific time intervals.

A. Context Model for Classification

The proposed model uses the user historical context in
order to predict the future location based on two
classification schemes: the cell-based classification
scheme (CA) and the cluster-based classification scheme
(CB). Such schemes are further categorized to those that
deal with spatial context and those that combine both
spatial and temporal (spatiotemporal) contexts. Generally
speaking, CA and CB use cell-ids and cluster-ids for the
class-values in the classification process, respectively.

Let Au be the set of cells that a user u has visited. Such
set defines the user movement space. Let also B be the set
of the defined clusters in the user movement space such
that each cell maps to a cluster. For the u user there is a
function, fu, which associates each cell a ∈ Au with its
cluster b ∈ B i.e., fu : Au → B (e.g., b = fu(a) is the cluster
of the visited cell a). A cell-transition from a cell a ∈ Au
to a cell c ∈ Au is defined as the movement of the u user
from the location (start) to the location (end), respectively
and is denoted as a → c. The cluster-transition is similarly
defined i.e., p → q, with p, q ∈ B and for each a ∈ Au,
there exists b ∈ Au: p = fu(a) and q = fu(b).

Definition: A trajectory of movements is defined as the
ordered vector Q of n cell transitions observed at specific
time stamps ts(ai → ai+1), i = 1, ..., n, that is (represented
in a matrix format):

Q(n) = [(a1 → a2) (a2 → a3) … (an → an+1)] (1)
The ordering of the transitions of a trajectory Q is
obtained by the ordering of their corresponding time
stamps of observation i.e., ts(ai-1 → ai) < ts(ai → ai+1), i =
1, ..., n. The last column of the vector is the current
transition. Updating Q for the upcoming transition at
ts(an+1 → an+2) is repeatedly done in a straightforward
manner:

Q(n+1) = [(a2 → a3)… (an → an+1) (an+1 → an+2 (2)
The oldest transition (a1 → a2) is discarded and archived
in the training set for the classification process.

A trajectory window or window of a Q trajectory is the
number of cell-transitions in Q i.e., n, and the duration of
a window is ts(a1→a2) - ts(an→an+1). Q is mapped to a
predefined time slot according to the value of the
corresponding duration.

Let Attr = {r1, r2, …, rm, rt} be a set of m spatial context
attributes ri, i = 1, ..., m, m>0, and rt is the temporal
context attribute. The domain of each attribute ri, i = 1, ...,
m, is the set of cells Au of the user movement space and

the domain of the rt attribute is the set of time slots. It
should be noted that, the incorporation of the rt
attribute in the set Attr refers to spatiotemporal
classification thus in case of the spatial classification
the set of attributes is Attr \ {rt}. It is worth noting
that, each pair of neighbouring attributes (rk, rk+1) with
rk, rk+1 ∈ Attr \ {rt}, k = 1, ..., m-1, corresponds to the
transition (ak → ak+1). Let Cttr = {c} be the singleton
of the class-attribute, where the domain of the c
attribute is the set of cells Au or clusters B in the case
CA and CB schemes, respectively. The value of the c
attribute is the end location (the am+1 cell or the
fu(am+1) cluster) of the last transition (am → am+1) of a
trajectory. Furthermore, a training tuple is represented
by a trajectory of m window length for spatial and
spatiotemporal schemes. In the latter case, the training
tuple contains also a temporal value, rt, that depicts
the time slot in which the corresponding trajectory is
observed.

a0 ∧ a1 ∧ a2 ∧ r0⇒a3
a1∧ a2 ∧ a3 ∧ r1⇒a0’
a2∧ a3 ∧ a0’ ∧ r2⇒a1’
a3∧ a0’∧ a1’∧ r3⇒a2’
a0’∧ a1’∧ a2’∧ r0’⇒a3’
…

a0 ∧ a1 ∧ a2 ⇒fu(a3)
a1∧ a2 ∧ a3 ⇒ fu(a0’)
a2∧ a3 ∧ a0’⇒ fu(a1’)
a3∧ a0’∧ a1’⇒ fu(a2’)
a0’∧ a1’∧ a2’⇒fu(a3’)
…

User movements Transitions Training tuples (CA)
a0
a1
a2
a3
a0’
a1’
a2’
a3’
a0’’
a1’’
…

a0 a1
a1 a2
a2 a3
a3 a0’
a0’ a1’
…

a0 ∧ a1 ∧ a2 ⇒a3
a1∧ a2 ∧ a3 ⇒a0’
a2∧ a3 ∧ a0’⇒a1’
a3∧ a0’∧ a1’⇒a2’
a0’∧ a1’∧ a2’⇒a3’
…

m-1 window length

Wm×m

Training tuples (CB)

m-1 window length

Wm×m

(m-1)+1 window length

Wm×m

Spatiotemporal training tuples

m = 4
ai : cell
fu(ai): cluster
ri : time slot

Fig. 1. The training-matrices and tuples for the CA and

CB, with window length 3 (m = 4)

A training-matrix Mm×m = {Qi, i = 1, …, m} is the

set of m training tuples (historical trajectories) of m-1
window length (Fig. 1). In a Mm×m, the kth transition of
the ith trajectory is the (k-1)th transition of the (i+1)th
trajectory, i, k = 1,...,m. The value of the start location
for the last transition of the (i+1)th trajectory is either
the value rm of the class-attribute of the ith trajectory
(in case of the CA) or the fu

-1(rm) cell (in case of the
CB). The fu

-1(b) corresponds to a cell that belongs to
the cluster b ∈ B. Hence, the classification rule for the
ith trajectory, i = 1, ..., m is defined as follows:

(r1 = a1i) ∧ … ∧ (rm-1 = a(m–1)i) ⇒ (c = rm) (3)
aji is the jth visited cell in the ith trajectory. The
trajectories in a matrix Mm×m are sequentially
overlapped. This means that, the end-location of the
last transition of the first trajectory becomes the start-
location of the first transition of the last trajectory,
forming a shift of transitions, as illustrated in Fig. 1.

Hence, the values of the class-attribute in the ith trajectory
determine the values of that attribute in the (m+i)th
trajectory. The classifier is fed with N matrices of m (or
m+1 in case of the temporal attribute) attributes thus with
N⋅m trajectories.

IV. CONTEXT MODEL APPLICATION

The trajectories of the users are categorized into
different groups according to the degree of movement
randomness. We have distinguished five groups
corresponding to five different values of such degree. The
considered values of randomness are: 0.0, 0.25, 0.5, 0.75
and 1.0. A low degree of randomness indicates a
deterministic movement (e.g., an ordinary moving
pattern). A high value of randomness implies the
opposite. Randomness is the main parameter for
demonstrating the performance of the model under
various conditions of uncertainty in the user mobility
behavior. This means that, the performance of the
classifier is influenced by the lack of regular moving
patterns. Hence, the deterministic trajectories (i.e., those
with a low value of randomness) are further specialized
into regular trajectories. Regular trajectories represent
user movements during a predefined period of time (e.g.,
a daily schedule from home to work). On the other hand,
random trajectories represent arbitrary user movements
(e.g., a quick coffee-stop before going to work).

A. Context Model Behavior

The CA and CB schemes predict the next cell and the
next cluster of the user movement, respectively. The next
location (cell or cluster) denotes the predicted user
location. Actually, there can be a high possibility that, the
next cell apr (determined by CA) might belong to the next
cluster bpr (determined by CB) i.e., fu(apr) = bpr. Let

{ }pruu ,)(| BbbafAaE npr,npr,npr,npr,n ⊆=∈= be the set of
the predicted cells apr,n that belong to the predicted
clusters bpr,n after n runs, n > 0. For each run the two
classifiers use a set of M training trajectories of m-1
window length, M, m>0. Then, the coherence metric Hn in
[8] between such classifiers indicates how much their
predictions are alike for a specific user. Alike predictions
means that, the two classifiers point to analogous results /
locations. In other words, CA predicts a cell that belongs
to the same cluster as that determined by CB. Once apr
belongs to bpr then, the location determination by the
model is reasonable and not contradictory.

 ∑⋅
=

N
nn E

Nn
H 1 ,

for N training matrices Mm×m
(4)

Fig. 2 depicts the behavior of Hn, n = 1000, against user
randomness. Hn assumes high and stable values (approx.
96%) as the randomness increases indicating that the two
schemes result in reasonable (i.e., not contradictory)
prediction results. In particular, a high value of such
metric depicts that, the user is predicted to be in a cluster
determined by CB and besides that in a specific cell within
that cluster determined by CA with a high degree of belief.

A high value of the coherence metric enables the
model to be more certain on decision making since the
two schemes support equivalent pieces of evidence.

0 10 20 30 40 50 60 70 80 90 100
50

55

60

65

70

75

80

85

90

95

100

% Randomness

C
oh

er
en

ce
 (H

)

Fig. 2. Coherence metric for CA and CB

B. Decision Making

A classifier predicts the next cell apr ∈ Au (or cluster
bpr ∈ B) that maximizes the corresponding probability
of occurrence given N training matrices, as follows:

)}{|b(maxargb

)}{|a(maxarga

Nmm
b

Nmm
a

×
∈

×
∈

=

=

MP

MP

B

A
u

C
B

pr

C
A

pr
 (5)

where, PCA and PCB are the probability distributions of
the class-values for the CA and CB schemes,
respectively. However, the decision dpr for the
predicted user location can be modeled as the vector
dpr = (apr, bpr) i.e., the next bpr cluster and the next apr
cell within that cluster. Such decision has to take into
consideration the coherence metric after the
application of CA and CB. A decision based only on
the predicted cluster bpr (i.e., applying only CB)
denotes that, one is certain (with a degree of PCB(bpr)
∈ (0,1]) that the user is predicted to be in a cell that
belongs to the bpr cluster but, has no knowledge about
which cell within such cluster. In this
case,

pruC b(a)faeachfor,
k

)a(P
A

== : 1 , where k is the

number of cells in a cluster. The latter probability
denotes the total ignorance of a user being in a cell
belonging to the predicted bpr cluster. Instead, the
coherence between the two classification schemes can
be exploited to infer the next cell within the predicted
cluster. Consider the following two pieces of evidence
H1 and H2 (Table I). H1 is observed once one has
applied the two schemes and the corresponding H
metric has assumed values over a given threshold h.
Then, the decision vector dpr is defined in Table I.
Upon a high value of h i.e., the two schemes deliver
fully compatible prediction results, apr is selected
since it belongs to the predicted cluster bpr. In such
decision, one can imply that apr ∈ En. The H2 evidence
is observed when the H metric assumes values below
a given threshold h. This means that, CA and CB

predict a cell apr and a cluster bpr, respectively with fu(apr)
≠ bpr. In that case, two further heuristic decisions H21 and
H22 are possible (Table I). H21 chooses as the next cell, the
geometrically central cell gpr of the predicted bpr (i.e.,
fu(gpr) = bpr) once the fu(apr) is a neighbor cluster of the bpr
cluster. Such decision is preferred when a cluster consists
of a small number of cells. The second decision results to
a cell cpr : fu(apr) = bpr such that cpr is the nearest cell
(according to a measurable distance D) to the apr.

Table I. Decision Making

(H1)

(H21)

()

 aaDargc
 where bcd

 then bargcfif case H

bb
 and bg

 where bgd
 then b ofneighbor is af if case H

else

bargb

 and aarga
where bad then hH if

baf
baf

b
22

b

21

b

bafa

~



















































=
=









=

=
=
=

=

=

=




 ≥

≠
=

∈

∈

∈

=

),(min
),(

)(Pmax)(:

)(Pmaxarg
)(centralof

),(
)(:

)(Pmax

)(Pmax
),(

ji

)(
)(

pr

prprpr

iC
B

pru

iC
B

pr

prpr

prprpr

prpru

iC
B

pr

iC)(:pr

prprpr

prju
priu

B
i

B
i

B
i

A
priui

(H22)

Notice: Evidently, the decisions based on CB assume

better prediction accuracy (the percentage of the correct
predicted locations) of CA. The predicted cluster is that
resulting from the CB and the predicted cell is chosen
according to the discussed decision-making. In fact, CB is
used for supporting the perdition result determined by CA.

V. EXPERIMENTAL EVALUATION

A. Experiment Setup

The Weka machine-learning workbench [1] is used for
our experiments. Weka is a collection of machine learning
algorithms and data preprocessing tools for data mining.
In order to evaluate the performance of the proposed
model with the two schemes, the user trajectories are
represented as a series of waypoints. Each waypoint is
defined by the location in terms of a cell-id, time of day
and speed. Specifically, a scenario in which users moved
around a set of predefined locations was used. Such
locations, derived from [9], are “home”, “work”,
“restaurant”, “coffee” and “movies”. The considered
regular pattern is “home → work → restaurant → coffee
→ movies → home”. The number of cells is 100 and the
number of clusters is 21.

We have enriched the user movement by a random
waypoint algorithm [9], in which five discrete categories
of randomness are used, i.e., from the regular pattern (%0
randomness with 500 training instances) to completely
disordered trajectories (100% randomness with 1000
training instances). It should be noted that, the distribution
assumed for cell residence times, as discussed in [7] is the

Generalized Gamma Distribution (GGD) with
probability density function G defined in (6). GGD is
considered the best fit for cell residence times [5].

0,,, ,
)(

),,;(1 >
Γ

=






−

− cbatet
ab

ccbatG
c

b
t

ac
ac

 (6)

Γ(·) denotes the Gamma function. The (a, b, c) =
(2.31, 1.22R, 1.72), where R is the cell radius and the
average user speed is 50 km/h. The model exploits
such distribution in order to map the user residence
times (in cells) into the predefined time intervals. The
time of day was divided in four time slots, e.g.,
morning – [09:00– 12:00], noon – [12:01-15:00],
afternoon – [15:01–18:00] and night – [18:01 –
21:00]. Furthermore, to simplify the simulation, we
assumed that the users moved with an average speed
of 50 km/h. Hence, the collected way point’ times
were normalized to imitate a constant speed
movement.

B. Prediction Accuracy for CA and CB schemes

We experiment with three classifiers with different
characteristics, the Naïve Bayes learner, the J48
Decision Tree learner, which is an implementation of
C4.5 algorithm, and the JRip Classification Rule
learner, which is an implementation of Ripper in order
to train (learn) and test our model. The J48 classifier
demonstrates the best prediction accuracy (Fig. 5) thus
we use it for our further experiments. Furthermore, if
n is the number of instances (i.e., training tuples
representing trajectories) and p the number of
attributes (i.e., the trajectory window length) then, the
time computational cost of the J48 algorithm is O(n⋅
p⋅ logn) [4]. The training phase was completed with
two weeks of trajectories observation. The trajectory
window length is set to 3, i.e., m = 4, and each cluster
contains seven cells. Finally, the coherence threshold
h for the decision-making is set to 0.96. The accuracy
measure used for the application of each scheme on
the J48 classifier is the 10-fold cross-validation.
Cross-validation is a method for estimating the
generalization error based on re-sampling [8,10].
Specifically, in p-fold cross-validation, the training
data, i.e., training tuples, are divided into M, M > 0,
subsets of approximately equal size. Hence, the
classifier is trained p times, each time leaving out one
of the subsets from the training set but, uses only the
omitted subset to compute the errors of each scheme
(CA and CB).

It can be observed from the above experiments
(Table II and Table III) that, spatiotemporal context
slightly improves the prediction accuracy of each
scheme for 0%, 25% and 50% of degree of
randomness, but slightly worse prediction accuracy
for 75% and 100% degree of randomness, thus we
should not consider it for further experimentation.
Finally, the prediction accuracy of the two schemes
for spatial simulated data is illustrated in Fig. 3.
Specifically, the two classifiers are built for two

weeks of training data and tested within five working
days, (from Monday to Friday). The time duration of the
entire set of trajectories is 12 hours.

Table II. Accuracy of CA based on 10-fold cross-validation

Table III. Accuracy of CB based on 10-fold cross-validation

0 10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

70

80

90

100
CA
CB

% Randomness

%
 P

re
di

ct
io

n
Ac

cu
ra

cy

Fig. 3. Comparison of the prediction accuracy between CA

and CB

C. Comparison with DM classifiers

Fig. 5 depicts the prediction accuracy between J48 and
the Naïve Bayes and JRip classifiers. Obviously, J48
assumes better performance both in prediction accuracy
and time complexity than the considered DM classifiers.
For that reason, we select J48 algorithm in order to
implement the CA scheme.

D. Comparison with non-DM classifiers

We compare CA scheme with LA [11], MMP [12] and
HLP [13] schemas by means of prediction accuracy.
Specifically, a Learning Automaton (LA) is based on a
state transition matrix, which comprises the one-step state
transition probabilities and follows a Linear Reward-
Penalty (LR-P) scheme. If the LA decision is correct a
positive feedback is received from the environment and
the probability of the respective state transition is
increased (“rewarded”). The rest of the probabilities are
evenly reduced (“penalized”) in order to balance the

increase. If the response is wrong the state transition is
“penalized” and the rest of the transitions are
“rewarded” accordingly. The path prediction
algorithm in [11] uses LA and exploits the spatial and
temporal contextual information. It could be derived
from the comparison in Fig. 4. that, for the same
training set (a two-week period) CA demonstrates
better prediction accuracy against LA.

The Mobile Motion Prediction (MMP) [12]
algorithm consists of the “regularity-pattern detection”
and the “model prediction” processes. The former
process decomposes the complicated daily movement
into the regular pattern part and the random movement
part. The latter process detects itinerary-patterns of the
user movement. Such patterns are used to predict the
next user movement.

Moreover, the Hierarchical Location Prediction
(HLP) [13] algorithm is based on random (pseudo-
stochastic) movement model, which integrates
deterministic behavior with randomness in an attempt
to mimic actual human behavior. HLP comprises an
approximate pattern-matching algorithm that extracts
regular movement pattern to estimate the global inter-
cell direction. It also uses the extended self-learning
Kalman-filter that deals with “unclassifiable” random
movements by tracking intra-cell trajectory and
predicting the next-cell crossing. In Fig. 6 the
prediction accuracy of the CA with that of the non-DM
classifiers is illustrated. Specifically, for a value of
50% randomness CA assumes the worst prediction
accuracy out of all classifiers, while for a value of
75% randomness CA has similar prediction accuracy
to that of the MMP classifier. Finally, for a
completely random movement (100% randomness) CA
assumes better performance than MMP.

0 10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

70

80

90

100

CA
LA

% Randomness

%
 P

re
di

ct
io

n
Ac

cu
ra

cy

Fig. 4. Comparison of the prediction accuracy between
CA and LA

Randomness Spatial
Context

Spatiotemporal
Context

0% 95.32 95.644
25% 71.25 71.33
50% 45.43 45.87
75% 39.12 38.93
100% 33.29 32.06

Randomness Spatial
Context

Spatiotemporal
Context

0% 98.63 98.97
25% 80.33 80.42
50% 61.56 61.91
75% 58.64 57.92
100% 55.17 54.02

% Randomness

%
 P

re
di

ct
io

n
Ac

cu
ra

cy

0 10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

70

80

90

100

J48 (CA)
Naive Bayes
JRip

Fig. 5. Comparison of the prediction among DM classifiers

% Randomness

%
 P

re
di

ct
io

n
Ac

cu
ra

cy

0 10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

70

80

90

100

CA
HLP
MMP

Fig. 6. Comparison of the prediction accuracy between CA

and non-DM classifiers

VI. RELATED WORK

There are a lot of prediction models based on ML
techniques. Specifically, the probabilistic model in [14] is
based on the user movement history of handover
behavior. Such model considers the history of all
handovers that occurred in a given cell using Naïve Bayes
classification. The authors in [15] report a probability-
based and a learning-based model for trajectory
prediction. The algorithm in [16] predicts the next inter-
cell movement of a mobile user in a PCE. Actually, the
user mobility patterns are mined from the history of the
trajectories resulting in mobility rules extraction. The
location prediction is based on such rules.

The authors in [17] implement an algorithm based on
user mobility patterns discovery. Such patterns, which are
derived from trajectory clustering, are used for location
prediction and dynamic resource allocation. Moreover, an
efficient online (incremental) algorithm that learns routes
between important locations and predicts the future
location is reported in [18]. Specifically, clusters of cell
sequences are built to represent physical routes.
Furthermore, the prediction is based on destination
probabilities and temporal reasoning. A data-mining

algorithm is proposed in [19], which efficiently
discovers sequential mobile patterns. Such patterns
exploit both spatial and application context (e.g.,
service requests). Moreover, the mobility tracking in a
cellular network is based on information theory by
using the compression Lempel-Ziv algorithm [20].
The algorithm [12] consists of the “regularity-pattern
detection” and the “model prediction” processes used
for predicting the user movements (Section V.D). The
work presented in [13] discusses pattern matching
techniques and extended, self-learning, Kalman filters
in order to estimate the future location. In addition, a
learning automaton that follows a linear reward-
penalty scheme is used in [11] to facilitate user
location prediction. Finally, the authors in [21] apply
evidential reasoning based on the Dempster-Shafer’s
theory in mobility prediction when adequate
knowledge about the history of user’s travelling
patterns is not available.

VII. CONCLUSIONS
We proposed a context model for spatial prediction

based on spatial and spatiotemporal user context.
Actually, we present how ML techniques are applied
to the discussed model for predicting future locations
in a PCE. Specifically, two approaches of
classification schemes (CA and CB) are presented that
exploit the user context in order to classify and predict
future movements. The selected classifier for such
model is the J48 Decision Tree classifier, which
produces classification rules that represent movement
trajectories. We also observe that spatial context
achieves better prediction accuracy than
spatiotemporal context.

The model is evaluated according to the 10-fold
cross validation method and sets of simulated user
movements assigned to different degrees of
randomness. Evidently, the CB scheme behaves better
in prediction accuracy than the CA scheme when both
spatial and spatiotemporal historical context are
considered. We also introduce the coherence metric
indicating how the CA and CB schemes produce non-
contradictory predictions. Hence, the final decision-
making relies on the combination of the coherent
predictions derived from CA and CB. Furthermore, we
select the J48 algorithm for the implementation of the
CA and CB schemes since it demonstrates better
prediction accuracy than that of the certain well-
known DM classifiers. CA is also compared with non-
DM classifiers where it converges faster than a LA
and it assumes better prediction accuracy than MMP
for 100% degree of randomness.

However, the model can be enhanced with more
semantics and context data such as application context
(e.g., service requests), proximity of people (e.g.,
social context) and destination and velocity of the user
movement. Furthermore, the discussed model has to
be validated with incremental, not-incremental
classifiers, meta-learners and filters (i.e., processes

that remove outliers). Hence, the proposed context
representation should be able to adapt to such schemes.
Finally, the use of approximate representation models
(e.g., fuzzy-set theory) has to be considered in order to
represent vague and imprecise spatial and temporal
contextual information.

REFERENCES

[1] I. H. Witten and E.Frank, Data Mining: Practical Machine
Learning Tool and Techniques, Morgan Kaufmann Series
in Data Management Systems, 2005.

[2] J. Han and M. Kamber, Data Mining: Concepts and
Techniques, Morgan Kaufmann Series in Data
Management Systems, 2001.

[3] E. Alpaydin, Introduction to Machine Learning, The MIT
Press, 2004.

[4] J. R. Quinlan, C4.5: Programs for Machine Learning,
Morgan Kaufmann Series in Machine Learning, 1993.

[5] M. Mahmood, M. Zonoozi, and P. Dassanayake, “User
Mobility Modeling and Characterization of Mobility
Patterns”, IEEE in Communications, vol. 15, no. 7, 1997.

[6] W. Cohen, A. Prieditis and S.J. Russel, “Fast Effective
Rule Induction”, Proc. Int. Conf. on Machine Learning,
1995.

[7] M. Kyriakakos, S.Hadjiefthymiades, N.Fragkiadakis, and
L. Merakos, "Enhanced Path Prediction for Network
Resource Management in Wireless LANs", IEEE Wireless
Communications Magazine, Special issue on "The
Evolution of Wireless LANs and PANs", vol. 10, no. 6,
2003.

[8] M. Weiss, and C.A. Kulikowski, Computer Systems That
Learn: Classification and Prediction Methods from
Statistics, Neural Networks, Machine Learning and Expert
Systems, Morgan Kaufmann, 1991.

[9] M. Kyriakakos, N.Frangiadakis, S.Hadjiefthymiades and
L.Merakos, "RMPG: A Realistic Mobility Pattern
Generator for the Performance Assessment of Mobility
Functions", Simulation Modeling Practice And Theory, vol.
12, no. 1, Elsevier, 2004.

[10] M. Plutowski, S. Sakata and H. White, “Cross-validation
estimates integrated mean squared error”, Advances in
Neural Information Processing Systems, vol. 6, 1994.

[11] S. Hadjiefthymiades, and L. Merakos, "Proxies + Path
Prediction: Improving Web Service Provision in Wireless-
Mobile Communications", ACM/Kluwer Mobile Networks
and Applications, Special Issue on Mobile and Wireless
Data Management, vol.8, no. 4, 2003.

[12] L. George and G. Maguire, “A class of mobile motion
prediction algorithms for wireless mobile computing and
communications”, Mobile Networks and Applications 1,
J.C. Baltzer AG, Science Publishers, 1996.

[13] T. Liu, P. Bahl and I. Chlamtac, “Mobility modeling,
location tracking, and trajectory prediction in wireless
ATM networks”, IEEE JSAC vol. 16, no. 6, 1998.

[14] S. Choi and K. G. Shin, “Predictive and adaptive
bandwidth reservation for hand-offs in QoS-sensitive
cellular networks”, Proc. ACM SIGCOMM ’98, 1998.

[15] L. Xiong and H. A. Karimi, “Location Awareness through
Trajectory Prediction”, Computers, Environment and
Urban Systems, Elsevier, 2006.

[16] G. Yavas, D. Katsaros, O. Ulusoy, and Y.Manolopoulos,
“A data mining approach for Location Prediction in Mobile
Environments”, Data & Knowledge Engineering vol. 54,
2005.

[17] D. Katsaros, A. Nanopoulos, “Clustering Mobile
Trajectories for Resource Allocation in Mobile
Environments”, Intelligent Data analysis, 2003.

[18] K. Laasonen, “Clustering and Prediction of Mobile
User Routes from Cellular Data”, Proc. PKDD, 2005.

[19] V. S. Tseng, and K. W. Lin, “Efficient mining and
prediction of user behavior patterns in mobile web
systems”, Information and Software Technology vol.
48, Elsevier, 2006.

[20] A. Bhattacharya and S.K. Das, “LeZi update: An
Information Theoretic Approach to Track Mobile Users
in PCS Networks”, Proc. ACM/IEEE Mobicom ’99,
1999.

[21] A. Karmouch, N. Samaan, “A Mobility Prediction
Architecture Based on Contextual Knowledge and
Spatial Conceptual Maps”, IEEE Transactions on
Mobile Computing, vol. 4 no. 6, 2005.

[22] C. Anagnostopoulos, P. Bougiouris, and S.
Hadjiefthymiades, “Prediction intelligence in context
aware applications”, Proc. 6th International Conference
on Mobile Data Management, 2005.

