
Path Prediction through Data Mining  
 

Theodoros Anagnostopoulos1, Christos Anagnostopoulos1, Stathes Hadjiefthymiades1, Alexandros 
Kalousis2, Miltos Kyriakakos1   

1Pervasive Computing Research Group, Communication Networks Laboratory, Department of 
Informatics and Telecommunications, University of Athens, Panepistimiopolis, Ilissia, Athens 

15784, Greece, tel: +302107275127, e-mail: {thanag, bleu, shadj, miltos}@di.uoa.gr 
2Artificial Intelligence Laboratory, Department of Computer Science, University of Geneva,  

Uni-Dufour, Geneva 1211, Switzerland, tel: +41223797630,  
e-mail: Alexandros.Kalousis@cui.unige.ch 

 
Abstract - Context-awareness is viewed as one of the most 
important aspects in the emerging ubiquitous computing 
paradigm. Mobile applications are required to operate in 
pervasive computing environments of dynamic nature. Such 
applications predict the appropriate context in their 
environment in order to act efficiently. A context model, 
which deals with the location prediction of moving users, is 
proposed. Such model is used for trajectory classification 
through Machine Learning techniques. Hence, spatial and 
spatiotemporal context prediction is regarded as context 
classification based on supervised learning. Finally, two 
classification schemes are presented, evaluated and 
compared with other ML schemes in order to support 
location prediction and decision-making. 
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I. INTRODUCTION 

In order to render applications and services intelligent 
enough to support modern users everywhere / anytime 
and materialize the so-called ambient intelligence, 
information on the present context of the user has to be 
captured and processed accordingly. Such information 
may refer to the user’s position, time, physical properties 
like temperature or other general parameters (e.g., the 
specific devices that the user carries, application context). 
The efficient management of contextual information 
requires detailed and thorough data modeling along with 
specific processing, reasoning and prediction capabilities. 

A computing environment, which is based on such 
pervasive infrastructure, is called Pervasive Computing 
Environment (PCE). In a PCE, diverse contexts can 
appear (e.g., user is in his/her office, walking outdoors, 
driving a car). However, context - awareness allows an 
entity to adapt to its environment thus offering a number 
of advantages and possibilities for new applications. One 
of the more intuitive capabilities of such applications is 
their proactivity. Predicting user actions and contextual 
parameters enables a new class of applications to be 
developed. Spatiotemporal prediction can be used to 
improve resource reservation in wireless networks and 
facilitates the possibility of providing desired location 
based services by preparing and feeding them with the 
appropriate context in advance [22]. Predictive context-
aware applications can perform context pre-evaluation 
aspects introducing innovative proactive services (e.g., 
alerts related to traffic conditions, certain information pre-
fetching and triggering actuation rules in advance). 

The concept of predicting spatial context with 
Machine Learning (ML) algorithms and techniques is 
quite novel. ML, in its broadest sense, can be 
considered as the study of algorithms that improve 
automatically through experience. It has a wide 
spectrum of applications including search engines and 
medical diagnosis. One of the most typical tasks in 
machine learning is the discovery of patterns from 
large datasets. The Data Mining (DM) sub-field of 
ML handles such data discovery. ML tasks can be 
roughly organized into: supervised learning (e.g., 
classification and regression) and unsupervised 
learning (e.g., clustering). In this paper, we exploit 
classification in order to predict contextual 
information.  In classification, training data are most 
often represented as attribute-value vectors, though 
other complex structures can be also considered (e.g., 
sets and graphs). Each training data is assigned to a 
specific class from a fixed set of classes (e.g., 
symbolic locations). The goal of the classification task 
is the prediction of the class of a given unseen data.  

We propose a context model that deals with location 
prediction of moving users. The proposed model 
predicts the next movement of a mobile user with a 
certain moving profile and history of movements. 
Furthermore, temporal context (e.g., morning, noon, 
afternoon and night) is also incorporated in the 
proposed model. Hence, the representation of a user 
can include both spatial and temporal information. 
Two classification schemes are introduced in order to 
support location prediction. These schemes are 
evaluated with three DM algorithms. Finally, the 
classification schemes are also compared with three 
non-DM schemes for location prediction, by means of 
prediction accuracy.  

The paper is organized as follows: Section II reports 
certain supervised learning schemes used for context 
classification while, in Section III a context 
representation model taking into account the current 
and historical user context is proposed. Section IV 
discusses the application of the proposed model in a 
PCE using specific ML classification schemes. In 
Section V, we evaluate the discussed context model 
with both DM and non-DM classifiers while, Section 
VI reports prior work on that research area. Finally 
Section VII concludes the paper.   



II. MACHINE LEARNING AND CLASSIFICATION  

Classification is the task of learning from examples, 
which are described by a set of attributes and a class 
attribute. The result of learning is a classification model 
that is capable of accurately predicting the value of the 
class attribute of unseen examples based only on the 
values of the attributes. For instance, a user is highly 
likely jogging if the following conjunction of certain 
attributes holds true at a specific time t, that is, “IF 
location(user, t) IS outdoors AND speed(user, t) IS high 
AND respiratory-level(user, t) IS high THEN context(user, 
t) IS highly likely jogging”. Specifically, a training set is 
fed to a classification algorithm and the result is a 
classification model. This classification model can then be 
applied to new unseen and unlabeled instances in order to 
predict their class labels. A crucial element in the whole 
process is the quality of the predictions that the 
classification model produces. In order to estimate this 
quality usually a test phase is also adopted. One of the 
most popular measures of classification performance is 
accuracy, which is the percentage of correctly predicted 
instances from a test set.  

Various algorithms exist for the task of classification. 
Some indicative algorithms are the following [1]: 
inferring rudimentary rules (e.g., 1R), statistical learning 
(e.g., naïve Bayes, support vector machines), decision tree 
induction (e.g., C4.5), classification rules (e.g., Ripper), 
instance-based learning (e.g., k-nearest neighbors) and 
nonlinear models (e.g., multi-layer perceptrons). 
Obviously, there is no single classification algorithm that 
works best independently of the application domain and 
problem. We have experimented with three different 
classification algorithms, which were initially selected for 
their good alignment with the domain assumptions (i.e., 
spatiotemporal context). Finally, the decision tree 
induction algorithm was selected for our experiments 
since it demonstrates satisfactory performance in the 
discussed domain. 

A. Bayesian algorithms 

Bayesian classification algorithms are statistical 
learning algorithms based on the Bayes theorem [8]. The 
Naïve Bayes algorithm, which is a simple Bayesian 
classifier, demonstrates a comparable performance with 
decision trees and neural network algorithms [2]. It 
assumes that, the effect of an attribute value on a given 
class is independent of the values of the other attributes. 
This assumption is known as the “class conditional 
independence”.  

B. Decision-Tree-Based algorithms  
A decision tree consists of internal decision nodes and 

leaves. Each node corresponds to a test function on a 
given attribute of the learning examples, each of the 
different possible outcomes of the test function leads to a 
different branch of the decision tree. Given an example 
that arrives to a specific node the corresponding test is 
applied on the example and the example is sorted to the 
appropriate branch according to the result of the test. The 

process starts at the root of the tree and is repeated 
recursively until a leaf node is reached. At that point 
the class label predicted is the label associated with 
the specific tree. A leaf node defines a region in the 
input space instances falling within that region assume 
the same class label. The hierarchical placement of 
decisions allows a fast localization of the region in 
which a specific example belongs, [3]. Decision Tree 
learners (C4.5 is a well known representative 
classifier [4]) use heuristic hill climbing, employing 
heuristics such as Information Gain, Information Gain 
Ratio and Gini Index, to select the most appropriate 
test at each decision node The result of a decision-
tree-based algorithms is a decision tree, which can be 
easily transformed into a set of classification rules, 
[4].  

C.  Rule induction for classification 

Rule-induction behaves similar to tree-induction. 
Actually, rule-induction performs a depth-first search, 
in the data graph and generates one path (represented 
as a classification rule) [3]. Rules are constructed one 
at a time. Each rule is a conjunction of conditions on 
discrete or numeric attributes and such conditions 
optimize some criterion (e.g., minimize entropy). A 
rule is said to “cover” an example if that example 
fulfils all the conditions of the rule. Once a rule is 
constructed it is asserted to the rule base. A 
representative rule-induction algorithm, that we 
experiment with, is the RIPPER [6], which stands for 
Repeated Incremental Pruning to Produce Error 
Reduction.  

III. CONTEXT REPRESENTATION 

The contextual information considered for location 
prediction is the spatial and temporal context of the 
user. Such contexts refer to the antecedent-part of the 
classification rules while the consequent-part of these 
rules is the spatial context. The spatial context refers 
to (i) the current user location, (ii) the history of user 
movements (represented by a vector of time-ordered 
transitions between locations) and (iii) the spatial 
representation into cells and clusters of cells. The 
temporal context refers to (i) the user residence time 
in a location, (ii) the time stamp of a transition 
occurrence and (iii) the taxonomy of user trajectories 
in specified time slots. 

The discussed model defines the user moving space 
i.e., current location, as the basic context attribute for 
classification. The user roams through a cellular 
network thus, the network cell represents a location. 
The model also represents the spatial context as a 
cluster of neighboring cells resulting to a hierarchical 
spatial context representation. Various categories for 
clustering n cells can be used, n > 0. Each cell 
belonging to a cluster has its unique identifier, cell-id, 
while the unique identifier of the cluster, cluster-id, is 
that of its central cell. 



Moreover, the model uses temporal context and examines 
the possibly enhancement in the prediction process. Such 
context refers to the occurrence time of a transition 
between locations (cells or clusters). The time duration of 
the day is split in four slots: morning, noon, afternoon and 
night. Each time slot relates to a specific time interval [a, 
b], where a and b represent the start- and the end-time 
stamps of the slot, respectively (e.g., the morning slot 
relates to the [9a.m., 12a.m.] time interval). The residence 
time of a user in each visited cell [5] is accumulated and 
categorized into specific time intervals.  

A. Context Model for Classification 

The proposed model uses the user historical context in 
order to predict the future location based on two 
classification schemes: the cell-based classification 
scheme (CA) and the cluster-based classification scheme 
(CB). Such schemes are further categorized to those that 
deal with spatial context and those that combine both 
spatial and temporal (spatiotemporal) contexts. Generally 
speaking, CA and CB use cell-ids and cluster-ids for the 
class-values in the classification process, respectively. 

Let Au be the set of cells that a user u has visited. Such 
set defines the user movement space. Let also B be the set 
of the defined clusters in the user movement space such 
that each cell maps to a cluster. For the u user there is a 
function, fu, which associates each cell a ∈ Au with its 
cluster b ∈ B i.e., fu : Au → B (e.g., b = fu(a) is the cluster 
of the visited cell a). A cell-transition from a cell a ∈ Au 
to a cell c ∈ Au is defined as the movement of the u user 
from the location (start) to the location (end), respectively 
and is denoted as a → c. The cluster-transition is similarly 
defined i.e., p → q, with p, q ∈ B and for each a ∈ Au, 
there exists b ∈ Au: p = fu(a) and q = fu(b).  

Definition: A trajectory of movements is defined as the 
ordered vector Q of n cell transitions observed at specific 
time stamps ts(ai → ai+1), i = 1, ..., n, that is (represented 
in a matrix format): 

Q(n) = [(a1 → a2) (a2 → a3) … (an → an+1)] (1) 
The ordering of the transitions of a trajectory Q is 
obtained by the ordering of their corresponding time 
stamps of observation i.e., ts(ai-1 → ai) < ts(ai → ai+1), i = 
1, ..., n. The last column of the vector is the current 
transition. Updating Q for the upcoming transition at 
ts(an+1 → an+2) is repeatedly done in a straightforward 
manner: 

Q(n+1) = [(a2 → a3)… (an → an+1) (an+1 → an+2 (2) 
The oldest transition (a1 → a2) is discarded and archived 
in the training set for the classification process. 

A trajectory window or window of a Q trajectory is the 
number of cell-transitions in Q i.e., n, and the duration of 
a window is ts(a1→a2) - ts(an→an+1). Q is mapped to a 
predefined time slot according to the value of the 
corresponding duration.  

Let Attr = {r1, r2, …, rm, rt} be a set of m spatial context 
attributes ri, i = 1, ..., m, m>0, and rt is the temporal 
context attribute. The domain of each attribute ri, i = 1, ..., 
m, is the set of cells Au of the user movement space and 

the domain of the rt attribute is the set of time slots. It 
should be noted that, the incorporation of the rt 
attribute in the set Attr refers to spatiotemporal 
classification thus in case of the spatial classification 
the set of attributes is Attr \ {rt}. It is worth noting 
that, each pair of neighbouring attributes (rk, rk+1) with 
rk, rk+1 ∈ Attr \ {rt}, k = 1, ..., m-1, corresponds to the 
transition (ak → ak+1). Let Cttr = {c} be the singleton 
of the class-attribute, where the domain of the c 
attribute is the set of cells Au or clusters B in the case 
CA and CB schemes, respectively. The value of the c 
attribute is the end location (the am+1 cell or the 
fu(am+1) cluster) of the last transition (am → am+1) of a 
trajectory. Furthermore, a training tuple is represented 
by a trajectory of m window length for spatial and 
spatiotemporal schemes. In the latter case, the training 
tuple contains also a temporal value, rt, that depicts 
the time slot in which the corresponding trajectory is 
observed. 

a0 ∧ a1 ∧ a2 ∧ r0⇒a3
a1∧ a2 ∧ a3  ∧ r1⇒a0’
a2∧ a3 ∧ a0’ ∧ r2⇒a1’
a3∧ a0’∧ a1’∧ r3⇒a2’
a0’∧ a1’∧ a2’∧ r0’⇒a3’
…

a0 ∧ a1 ∧ a2  ⇒fu(a3 )
a1∧ a2 ∧ a3   ⇒ fu(a0’)
a2∧ a3 ∧ a0’⇒ fu(a1’)
a3∧ a0’∧ a1’⇒ fu(a2’)
a0’∧ a1’∧ a2’⇒fu(a3’)
…

User movements Transitions Training tuples (CA)
a0
a1
a2
a3
a0’
a1’
a2’
a3’
a0’’
a1’’
…

a0 a1
a1 a2
a2 a3
a3 a0’
a0’ a1’
…

a0 ∧ a1 ∧ a2  ⇒a3
a1∧ a2 ∧ a3   ⇒a0’
a2∧ a3 ∧ a0’⇒a1’
a3∧ a0’∧ a1’⇒a2’
a0’∧ a1’∧ a2’⇒a3’
…

m-1 window length

Wm×m

Training tuples (CB)

m-1 window length

Wm×m

(m-1)+1 window length

Wm×m

Spatiotemporal training tuples

m = 4
ai : cell
fu(ai ): cluster
ri : time slot

 
Fig. 1. The training-matrices and tuples for the CA and 

CB, with window length 3 (m = 4) 
 
A training-matrix Mm×m = {Qi, i = 1, …, m} is the 

set of m training tuples (historical trajectories) of m-1 
window length (Fig. 1). In a Mm×m, the kth transition of 
the ith trajectory is the (k-1)th transition of the (i+1)th 
trajectory, i, k = 1,...,m. The value of the start location 
for the last transition of the (i+1)th trajectory is either 
the value rm of the class-attribute of the ith trajectory 
(in case of the CA) or the fu

-1(rm) cell (in case of the 
CB). The fu

-1(b) corresponds to a cell that belongs to 
the cluster b ∈ B. Hence, the classification rule for the 
ith trajectory, i = 1, ..., m is defined as follows: 

(r1 = a1i ) ∧ … ∧ (rm-1 = a(m–1)i ) ⇒ (c = rm) (3) 
aji is the jth visited cell in the ith trajectory. The 
trajectories in a matrix Mm×m are sequentially 
overlapped. This means that, the end-location of the 
last transition of the first trajectory becomes the start-
location of the first transition of the last trajectory, 
forming a shift of transitions, as illustrated in Fig. 1. 



Hence, the values of the class-attribute in the ith trajectory 
determine the values of that attribute in the (m+i)th 
trajectory. The classifier is fed with N matrices of m (or 
m+1 in case of the temporal attribute) attributes thus with 
N⋅m trajectories. 

IV. CONTEXT MODEL APPLICATION 

The trajectories of the users are categorized into 
different groups according to the degree of movement 
randomness. We have distinguished five groups 
corresponding to five different values of such degree. The 
considered values of randomness are: 0.0, 0.25, 0.5, 0.75 
and 1.0. A low degree of randomness indicates a 
deterministic movement (e.g., an ordinary moving 
pattern). A high value of randomness implies the 
opposite. Randomness is the main parameter for 
demonstrating the performance of the model under 
various conditions of uncertainty in the user mobility 
behavior. This means that, the performance of the 
classifier is influenced by the lack of regular moving 
patterns. Hence, the deterministic trajectories (i.e., those 
with a low value of randomness) are further specialized 
into regular trajectories. Regular trajectories represent 
user movements during a predefined period of time (e.g., 
a daily schedule from home to work). On the other hand, 
random trajectories represent arbitrary user movements 
(e.g., a quick coffee-stop before going to work).  

A. Context Model Behavior 

The CA and CB schemes predict the next cell and the 
next cluster of the user movement, respectively. The next 
location (cell or cluster) denotes the predicted user 
location. Actually, there can be a high possibility that, the 
next cell apr (determined by CA) might belong to the next 
cluster bpr (determined by CB) i.e., fu(apr) = bpr. Let 

{ }pruu ,)(| BbbafAaE npr,npr,npr,npr,n ⊆=∈=  be the set of 
the predicted cells apr,n that belong to the predicted 
clusters bpr,n after n runs, n > 0. For each run the two 
classifiers use a set of M training trajectories of m-1 
window length, M, m>0. Then, the coherence metric Hn in 
[8] between such classifiers indicates how much their 
predictions are alike for a specific user. Alike predictions 
means that, the two classifiers point to analogous results / 
locations. In other words, CA predicts a cell that belongs 
to the same cluster as that determined by CB. Once apr 
belongs to bpr then, the location determination by the 
model is reasonable and not contradictory. 

 ∑⋅
=

N
nn E

Nn
H 1 ,  

for N training matrices Mm×m  
(4) 

Fig. 2 depicts the behavior of Hn, n = 1000, against user 
randomness. Hn assumes high and stable values (approx. 
96%) as the randomness increases indicating that the two 
schemes result in reasonable (i.e., not contradictory) 
prediction results. In particular, a high value of such 
metric depicts that, the user is predicted to be in a cluster 
determined by CB and besides that in a specific cell within 
that cluster determined by CA with a high degree of belief. 

A high value of the coherence metric enables the 
model to be more certain on decision making since the 
two schemes support equivalent pieces of evidence.   
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Fig. 2. Coherence metric for CA and CB 

B. Decision Making 

A classifier predicts the next cell apr ∈ Au (or cluster 
bpr ∈ B) that maximizes the corresponding probability 
of occurrence given N training matrices, as follows: 

)}{|b(maxargb

)}{|a(maxarga
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where, PCA and PCB are the probability distributions of 
the class-values for the CA and CB schemes, 
respectively. However, the decision dpr for the 
predicted user location can be modeled as the vector 
dpr = (apr, bpr) i.e., the next bpr cluster and the next apr 
cell within that cluster. Such decision has to take into 
consideration the coherence metric after the 
application of CA and CB. A decision based only on 
the predicted cluster bpr (i.e., applying only CB) 
denotes that, one is certain (with a degree of PCB(bpr) 
∈ (0,1]) that the user is predicted to be in a cell that 
belongs to the bpr cluster but, has no knowledge about 
which cell within such cluster. In this 
case,

pruC b(a)faeachfor,
k

)a(P
A

== :  1 , where k is the 

number of cells in a cluster. The latter probability 
denotes the total ignorance of a user being in a cell 
belonging to the predicted bpr cluster. Instead, the 
coherence between the two classification schemes can 
be exploited to infer the next cell within the predicted 
cluster. Consider the following two pieces of evidence 
H1 and H2 (Table I). H1 is observed once one has 
applied the two schemes and the corresponding H 
metric has assumed values over a given threshold h. 
Then, the decision vector dpr is defined in Table I. 
Upon a high value of h i.e., the two schemes deliver 
fully compatible prediction results, apr is selected 
since it belongs to the predicted cluster bpr. In such 
decision, one can imply that apr ∈ En. The H2 evidence 
is observed when the H metric assumes values below 
a given threshold h. This means that, CA and CB 



predict a cell apr and a cluster bpr, respectively with fu(apr) 
≠ bpr. In that case, two further heuristic decisions H21 and 
H22 are possible (Table I). H21 chooses as the next cell, the 
geometrically central cell gpr of the predicted bpr (i.e., 
fu(gpr) = bpr) once the fu(apr) is a neighbor cluster of the bpr 
cluster. Such decision is preferred when a cluster consists 
of a small number of cells. The second decision results to 
a cell cpr : fu(apr) = bpr  such that cpr is the nearest cell 
(according to a measurable distance D) to the apr. 

Table I. Decision Making 
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Notice: Evidently, the decisions based on CB assume 

better prediction accuracy (the percentage of the correct 
predicted locations) of CA. The predicted cluster is that 
resulting from the CB and the predicted cell is chosen 
according to the discussed decision-making. In fact, CB is 
used for supporting the perdition result determined by CA.      

V. EXPERIMENTAL EVALUATION 

A. Experiment Setup 

The Weka machine-learning workbench [1] is used for 
our experiments. Weka is a collection of machine learning 
algorithms and data preprocessing tools for data mining. 
In order to evaluate the performance of the proposed 
model with the two schemes, the user trajectories are 
represented as a series of waypoints. Each waypoint is 
defined by the location in terms of a cell-id, time of day 
and speed. Specifically, a scenario in which users moved 
around a set of predefined locations was used. Such 
locations, derived from [9], are “home”, “work”, 
“restaurant”, “coffee” and “movies”. The considered 
regular pattern is “home → work → restaurant → coffee 
→ movies → home”. The number of cells is 100 and the 
number of clusters is 21. 

We have enriched the user movement by a random 
waypoint algorithm [9], in which five discrete categories 
of randomness are used, i.e., from the regular pattern (%0 
randomness with 500 training instances) to completely 
disordered trajectories (100% randomness with 1000 
training instances). It should be noted that, the distribution 
assumed for cell residence times, as discussed in [7] is the 

Generalized Gamma Distribution (GGD) with 
probability density function G defined in (6). GGD is 
considered the best fit for cell residence times [5]. 
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Γ(·) denotes the Gamma function. The (a, b, c) = 
(2.31, 1.22R, 1.72), where R is the cell radius and the 
average user speed is 50 km/h. The model exploits 
such distribution in order to map the user residence 
times (in cells) into the predefined time intervals. The 
time of day was divided in four time slots, e.g., 
morning – [09:00– 12:00], noon – [12:01-15:00], 
afternoon – [15:01–18:00] and night – [18:01 – 
21:00]. Furthermore, to simplify the simulation, we 
assumed that the users moved with an average speed 
of 50 km/h. Hence, the collected way point’ times 
were normalized to imitate a constant speed 
movement. 

B. Prediction Accuracy for CA and CB schemes  

We experiment with three classifiers with different 
characteristics, the Naïve Bayes learner, the J48 
Decision Tree learner, which is an implementation of 
C4.5 algorithm, and the JRip Classification Rule 
learner, which is an implementation of Ripper in order 
to train (learn) and test our model. The J48 classifier 
demonstrates the best prediction accuracy (Fig. 5) thus 
we use it for our further experiments. Furthermore, if 
n is the number of instances (i.e., training tuples 
representing trajectories) and p the number of 
attributes (i.e., the trajectory window length) then, the 
time computational cost of the J48 algorithm is O(n⋅ 
p⋅ logn) [4]. The training phase was completed with 
two weeks of trajectories observation. The trajectory 
window length is set to 3, i.e., m = 4, and each cluster 
contains seven cells. Finally, the coherence threshold 
h for the decision-making is set to 0.96. The accuracy 
measure used for the application of each scheme on 
the J48 classifier is the 10-fold cross-validation. 
Cross-validation is a method for estimating the 
generalization error based on re-sampling [8,10]. 
Specifically, in p-fold cross-validation, the training 
data, i.e., training tuples, are divided into M, M > 0, 
subsets of approximately equal size. Hence, the 
classifier is trained p times, each time leaving out one 
of the subsets from the training set but, uses only the 
omitted subset to compute the errors of each scheme 
(CA and CB). 

It can be observed from the above experiments 
(Table II and Table III) that, spatiotemporal context 
slightly improves the prediction accuracy of each 
scheme for 0%, 25% and 50% of degree of 
randomness, but slightly worse prediction accuracy 
for 75% and 100% degree of randomness, thus we 
should not consider it for further experimentation. 
Finally, the prediction accuracy of the two schemes 
for spatial simulated data is illustrated in Fig. 3. 
Specifically, the two classifiers are built for two 



weeks of training data and tested within five working 
days, (from Monday to Friday). The time duration of the 
entire set of trajectories is 12 hours. 

Table II. Accuracy of CA based on 10-fold cross-validation 

 
Table III. Accuracy of CB based on 10-fold cross-validation 
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Fig. 3. Comparison of the prediction accuracy between CA 

and CB 

C. Comparison with DM classifiers 

Fig. 5 depicts the prediction accuracy between J48 and 
the Naïve Bayes and JRip classifiers. Obviously, J48 
assumes better performance both in prediction accuracy 
and time complexity than the considered DM classifiers. 
For that reason, we select J48 algorithm in order to 
implement the CA scheme. 

D. Comparison with non-DM classifiers 

We compare CA scheme with LA [11], MMP [12] and 
HLP [13] schemas by means of prediction accuracy. 
Specifically, a Learning Automaton (LA) is based on a 
state transition matrix, which comprises the one-step state 
transition probabilities and follows a Linear Reward-
Penalty (LR-P) scheme. If the LA decision is correct a 
positive feedback is received from the environment and 
the probability of the respective state transition is 
increased (“rewarded”). The rest of the probabilities are 
evenly reduced (“penalized”) in order to balance the 

increase. If the response is wrong the state transition is 
“penalized” and the rest of the transitions are 
“rewarded” accordingly. The path prediction 
algorithm in [11] uses LA and exploits the spatial and 
temporal contextual information. It could be derived 
from the comparison in Fig. 4. that, for the same 
training set (a two-week period) CA demonstrates 
better prediction accuracy against LA. 

The Mobile Motion Prediction (MMP) [12] 
algorithm consists of the “regularity-pattern detection” 
and the “model prediction” processes. The former 
process decomposes the complicated daily movement 
into the regular pattern part and the random movement 
part. The latter process detects itinerary-patterns of the 
user movement. Such patterns are used to predict the 
next user movement. 

Moreover, the Hierarchical Location Prediction 
(HLP) [13] algorithm is based on random (pseudo-
stochastic) movement model, which integrates 
deterministic behavior with randomness in an attempt 
to mimic actual human behavior. HLP comprises an 
approximate pattern-matching algorithm that extracts 
regular movement pattern to estimate the global inter-
cell direction. It also uses the extended self-learning 
Kalman-filter that deals with “unclassifiable” random 
movements by tracking intra-cell trajectory and 
predicting the next-cell crossing. In Fig. 6 the 
prediction accuracy of the CA with that of the non-DM 
classifiers is illustrated. Specifically, for a value of 
50% randomness CA assumes the worst prediction 
accuracy out of all classifiers, while for a value of 
75% randomness CA has similar prediction accuracy 
to that of the MMP classifier. Finally, for a 
completely random movement (100% randomness) CA 
assumes better performance than MMP. 
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Fig. 4. Comparison of the prediction accuracy between 
CA and LA 

Randomness   Spatial 
Context  

Spatiotemporal 
Context 

0%   95.32  95.644 
25% 71.25  71.33 
50% 45.43  45.87 
75% 39.12  38.93 
100%  33.29  32.06 

 

Randomness   Spatial 
Context 

Spatiotemporal 
Context

0%  98.63  98.97
25%  80.33  80.42
50%  61.56  61.91
75%  58.64  57.92
100% 55.17  54.02
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Fig. 5. Comparison of the prediction among DM classifiers 
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Fig. 6. Comparison of the prediction accuracy between CA 

and non-DM classifiers 

VI. RELATED WORK 

There are a lot of prediction models based on ML 
techniques. Specifically, the probabilistic model in [14] is 
based on the user movement history of handover 
behavior. Such model considers the history of all 
handovers that occurred in a given cell using Naïve Bayes 
classification. The authors in [15] report a probability-
based and a learning-based model for trajectory 
prediction. The algorithm in [16] predicts the next inter-
cell movement of a mobile user in a PCE. Actually, the 
user mobility patterns are mined from the history of the 
trajectories resulting in mobility rules extraction. The 
location prediction is based on such rules. 

The authors in [17] implement an algorithm based on 
user mobility patterns discovery. Such patterns, which are 
derived from trajectory clustering, are used for location 
prediction and dynamic resource allocation. Moreover, an 
efficient online (incremental) algorithm that learns routes 
between important locations and predicts the future 
location is reported in [18]. Specifically, clusters of cell 
sequences are built to represent physical routes. 
Furthermore, the prediction is based on destination 
probabilities and temporal reasoning. A data-mining 

algorithm is proposed in [19], which efficiently 
discovers sequential mobile patterns. Such patterns 
exploit both spatial and application context (e.g., 
service requests). Moreover, the mobility tracking in a 
cellular network is based on information theory by 
using the compression Lempel-Ziv algorithm [20]. 
The algorithm [12] consists of the “regularity-pattern 
detection” and the “model prediction” processes used 
for predicting the user movements (Section V.D). The 
work presented in [13] discusses pattern matching 
techniques and extended, self-learning, Kalman filters 
in order to estimate the future location. In addition, a 
learning automaton that follows a linear reward-
penalty scheme is used in [11] to facilitate user 
location prediction. Finally, the authors in [21] apply 
evidential reasoning based on the Dempster-Shafer’s 
theory in mobility prediction when adequate 
knowledge about the history of user’s travelling 
patterns is not available. 

VII. CONCLUSIONS 
We proposed a context model for spatial prediction 

based on spatial and spatiotemporal user context. 
Actually, we present how ML techniques are applied 
to the discussed model for predicting future locations 
in a PCE. Specifically, two approaches of 
classification schemes (CA and CB) are presented that 
exploit the user context in order to classify and predict 
future movements. The selected classifier for such 
model is the J48 Decision Tree classifier, which 
produces classification rules that represent movement 
trajectories. We also observe that spatial context 
achieves better prediction accuracy than 
spatiotemporal context. 

The model is evaluated according to the 10-fold 
cross validation method and sets of simulated user 
movements assigned to different degrees of 
randomness. Evidently, the CB scheme behaves better 
in prediction accuracy than the CA scheme when both 
spatial and spatiotemporal historical context are 
considered. We also introduce the coherence metric 
indicating how the CA and CB schemes produce non-
contradictory predictions. Hence, the final decision-
making relies on the combination of the coherent 
predictions derived from CA and CB. Furthermore, we 
select the J48 algorithm for the implementation of the 
CA and CB schemes since it demonstrates better 
prediction accuracy than that of the certain well-
known DM classifiers. CA is also compared with non-
DM classifiers where it converges faster than a LA 
and it assumes better prediction accuracy than MMP 
for 100% degree of randomness. 

However, the model can be enhanced with more 
semantics and context data such as application context 
(e.g., service requests), proximity of people (e.g., 
social context) and destination and velocity of the user 
movement. Furthermore, the discussed model has to 
be validated with incremental, not-incremental 
classifiers, meta-learners and filters (i.e., processes 



that remove outliers). Hence, the proposed context 
representation should be able to adapt to such schemes. 
Finally, the use of approximate representation models 
(e.g., fuzzy-set theory) has to be considered in order to 
represent vague and imprecise spatial and temporal 
contextual information.      
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