
A Framework for Imprecise Context Reasoning  
Christos B. Anagnostopoulos, Panagiotis Pasias, Stathes Hadjiefthymiades 

Pervasive Computing Research Group, Communication Networks Laboratory, Department of Informatics and 
Telecommunications, University of Athens, Panepistimiopolis, 15784, Greece, tel.: +302107275148,  

e-mail: {bleu, shadj}@di.uoa.gr 
 
Abstract — The knowledge about the user context refers to a 
sequence of activities performed in a pervasive computing 
environment. Such sequence and the corresponding context 
transitions typically constitute the up-to-now user situation, 
thus, clusters of similar situations can be formed. A 
framework that represents and infers the current user 
context and reasons about user situations through 
approximate reasoning and clustering techniques is 
proposed.  
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I. INTRODUCTION 
In a Pervasive Computing Environment (PCE) certain user 

activities (e.g., working in office, attending a meeting) may 
take place. Context-aware applications should be capable of 
determining that, the user is engaged in various situations at 
different time. Therefore, context refers to the current values 
of specific parameters that represent a user activity while 
situation refers to the history of such activities that have 
occurred during a certain time frame. Hence, situation 
represents transitions among pieces of context, e.g., the 
transition from the context: a user is attending a meeting to 
the context: a user is presenting a report during a meeting 
initiates an application to prepare the environment for the 
user’s presentation (e.g., disseminating the presentation files 
to the attendants of the meeting and setting up the projector 
device). Moreover, as people group together in a PCE, they 
may desire to carry out similar activities thus are involved in 
similar context (e.g., a group of persons interested in the 
same topic in a conference). The idea of clustering user 
context transitions enables context-aware applications to 
initiate certain actuation rules and to reason about user 
behavior. 

The process of sensing, interpreting and reasoning about 
context is called context determination. The more contextual 
data is sensed the greater the possibility of a correct 
determination becomes. Nevertheless, context is not always 
complete or accurate instead, it is degraded by several kinds 
of imperfections, e.g., missing information, unreliability of 
the sources and possible conflicting observations of the same 
phenomena. Determining context and, consequently, 
reasoning about it, introduces several types of uncertainty in 
context and situation representation. Such uncertainty is more 
effectively represented with the aid of the fuzzy set theory 
and the possibility theory [1]. By applying a degree of 
fuzziness not only to the determination phase but also to 
reasoning about context makes context-aware applications 
more robust, flexible and capable of handling a wide range of 
contextual attributes. 

We propose a framework for determining and reasoning 
about context based on clustering (unsupervised learning). 
The contribution of such framework is two-fold: (i) context 
and situational context representation and (ii) context 
inference and reasoning about situation transitions under 
uncertainty. Two types of determination rule are introduced: 

(i) the context determination rule and (ii) the situational 
context determination rule. The former rule infers the current 
user context and the latter one refers to the user situation 
classification. Our framework adopts possibility theory to 
capture uncertainty while it includes hierarchical context 
modeling through fuzzy sets-based modeling. In addition, it 
clusters similar situations through the Fuzzy C-Means 
clustering algorithm (FCM) where each user situation is 
associated with a cluster.  

II. CONTEXT REPRESENTATION 
A fuzzy set A is defined over a subset of a universe of 

discourse U through a membership function, µA: U → [0, 1]. 
An element a ∈  U belongs to A to a certain degree µA(a). The 
higher a value of µA(a) the higher degree of membership of a 
to A. A is represented as A = {µA(a1) / a1 + …+ µA(an) / an} if U 
is measurable, ai ∈  U, i = 1, …, n. Let B be a fuzzy set then, 
the possibility that “B is A” is the number in [0,1] given by 
Pos(B is A) = maxa(min(µA(a), µB(a))), a ∈  U. We adopt fuzzy 
set theory for representing contextual attributes and values. 
Consider the following fixed set P(0) = {p1, …, pm} of m > 0 
attributes. P(0) represents the ground context, which means 
that each pi ∈  P(0), i = 1, …, m, cannot be inferred 
(determined) by any pi ∈  P(0), j ≠ i. Any set P(k) is called a k-
level set, k > 0, and represents an inferred context. Each 
attribute p ∈  P(k) is associated with a domain Domp, which is 
a set of values that p may take. The attribute v, which is 
constrained to assume values in the subset Domv ⊆  Domp, is 
defined as the term for p over the Domv domain. Such term 
characterizes p when it assumes values in Domv. v is 
represented by the fuzzy set Av = {(µv / u) | u ∈  Domv, µv: Domv 
→ [0,1]}, where µv is the possibility distribution function [1] 
in Domv. An attribute p is instantiated as v when referring to 
the “p is v” proposition. Let v* ∈  Domp be a value 
(observation) for the v term related to p attribute then, the 
degree of fulfillment d ∈  [0,1] of the “p is v” proposition is 
defined as: d(p is v) = Pos(p is v | v*) i.e., the possibility of “p 
is v” given the observation v* and equates to d(p is v) = 
maxu(min(v(u),v*(u))), u ∈  Domp. Consider a logical 
conjunction of terms of instantiated attributes then, the 
production rule, Rn: (p1 is v1) ∧  (p2 is v2) ∧  ... ∧  (pn is vn) → (pm 
is vm) constitutes the context determination rule with which pm 
of a higher level set is concluded. The concluded pm is called 
context of m-level. The value of the degree of the conclusion 
d(pm is vm) is calculated as by a fuzzy inference engine. Rn 
combines contextual information from several knowledge 
sources (e.g., user location, time, people proximity). 
Therefore, such information may be imprecise (inexact) due to 
limited sources. Once the antecedent part of Rn holds true to a 
degree then, the user involvement in a certain context is 
inferred, at most, with that degree. 

Pieces of context structure hierarchies denoting that, some 
context is more generic than other forming generalization 
relations among them. A transitive relation between pn and pm 
context has the form pn ⊆  pm with the associated semantics: pn 
⊆  pm ⇔ {∃ .Rn, Rm | (Rn → pn) ∧  (Rm → pm) ∧  (Dompn ⊇  



Dompm) ∧  (n ≥ m)}. pn, pm pieces of context define a hierarchy 
iff (i) pm derives from a set of attributes of lower level than 
those of pn (i.e., n ≥ m) and (ii) the antecedents of pm are less 
than those of pn. Although pm represents a more abstract 
context than pn, i.e., pn is-a pm, the opposite implication does 
not always hold. 

Notice: One could deduce that, such hierarchical modeling 
avoids cycles but also weakens possibilities in forming other 
terms and thus would lead to greater generality. Instead, a 
thorough examination on such representation would lead to 
the conclusion that: different combinations among attributes 
result in different context determination rules thus, a low-
level context extends more than one high-level pieces of 
context. Hence, a multi-resolution context representation is 
achieved, which forms a lattice of network (graph) of pieces 
of context in various levels and not a tree-based knowledge 
representation.   

III. SITUATIONAL CONTEXT REPRESENTATION 
In the discussed framework the user involvement in p ∈  

P(k) context exclusively implies that the user is not involved 
in q ∈  P(k). All pieces of context of the same k-level are not 
compatible i.e., they do not co-occur. A transition from p to q 
with p, q ∈  P(k), is called context transition of k-level, with 
the notation p ⇒ q. Let Π(k) be the Markov chain for k-level 
pieces of context that is: Π(k) = {p ∈  P(k)} provided that, 
Prob(p(t+1) is v(t+1) | p(0) is v(0), … , p(t) is v(t)) = 
Prob(p(t+1) is v(t+1) | p(t) is v(t)), t ∈  ℵ . Then, Π(k)N×N is 
the transition matrix of Π(k) for k-level context. Π(k)N×N 
contains N2 elements Prob(pi ⇒ pj) with N = |P(k)|, pi , pj ∈  
P(k) and it is  not necessarily symmetrical. A user relates to a 
set of matrices for each k-level. The context transitions in 
Π(k) represent the situational context or situation over time, 
i.e., the k-level situation. The ⊆  relation between p ∈  P(k) 
and q ∈  P(m) context, m > k, results analogously in a 
hierarchy of matrices. m-level situations are more abstract 
than those of k-level situations. Consequently, the m-level 
situation is a generalization of the k-level situation. The 
hierarchy of matrices assumes the constraint: Prob(pi ⇒ pj) ≥ 
Prob(qi ⇒ qj), pi , pj ∈  P(k), qi , qj ∈  P(m), k < m, for all pairs 
(i, j). 

pme

pof

qpr

qjo

qwo

Π(1)

Π(0)

is-a relation (⊆ )  
Fig. 1. Hierarchical structure of matrices 

Example: Consider the pieces of context pme, pof, qwo, qpr, qjo, 
which stand for the context user is located in a meeting room 
(0-level), user is located in an office (0-level), user is working 
in her office (1-level), user is presenting a report during a 
meeting (1-level) and user joins a meeting (1-level), 
respectively. Hence, Prob(pof ⇒ pme) ≥ Prob(qwo ⇒ qpr). That 
is because the probability of a user being in pme is the 
maximum possibility of the user being either in qpr or in qjo 
[1]. Fig. 1 depicts the two matrices Π(0)2×2 and Π(1)3×3 
forming an hierarchy. Π(0) refers to low-level situations and 
Π(1) refers to more specific ones. A transition between pieces 
of context belonging to Π(1) represents also a transition 
between pieces of context belonging to Π(0), but the opposite 
implication does not always hold. 

IV. SITUATIONAL CONTEXT CLUSTERING 
The situation of a user in a PCE is represented by a set of 

matrices each belonging to different levels of specialization. In 
order to reason about situations, the framework groups the 
matrices (of a specific level) into clusters. Hence, the matrix 
of the master-cluster (centroid) is a representative situation of 
a user (e.g., user behavior) whose matrix is similar to the 
centroid. Subdividing a set of matrices of k-level context X(k) 
= {x1, …, xn},  xi ∈  Π(k)N×N, i ∈  ℵ + into groups of similar 
matrices is called context clustering of X(k). Given a set C = 
{c1, …, cm} of centroids, a distance function, δ, is defined as δ: 
Π(k)N×N × C → [0,1]. A value of δ(x, c) = 0 means that x 
matches the centroid c perfectly. A value of 1 implies the 
opposite. The relationship between matrix and centroid is 
interpreted by means of a membership matrix Un×m where uij ∈  
Un×m indicates the degree of membership of xi to cj. uij ∈  [0,1] 
is a measure of how strongly a matrix (situation) is member of 
a particular centroid. Such measure denotes that, there are not 
sharp boundaries among matrices and centroids. A matrix 
possibly belongs to more that one centroids but to a certain 
degree. Hence, a user might be involved in diverse situations 
(e.g., a user might demonstrate diverse behaviors) represented 
by centroids with different degrees. The framework uses the 
FCM algorithm [2] in order to calculate such measure for each 
situation.  

Two situations are similar according to δ. A classical 
distance metric is the Euclidean distance between the A and B 
situations. We introduce a distance metric that exploits the 
semantics of context transitions when referring to similar 
situations. Consider the A and B situations and let pi be the ith 
context in the Aij and Bij vectors, j = 1, ..., N. Let context pk 
and pm , k, m < N, of A and B, respectively, that both maximize 
the transition probability aik = Prob(pi ⇒pk) and βim = Prob(pi 

⇒pm), respectively, i.e., pk = argmaxaix, and pm = argmaxβix, x 
= 1,…N for a given pi. Hence, A and B are considered close (in 
distance δ) with respect to pi if k = m. The distance δi w.r.t. ith 
context is |aik - βim|. The lower the value of δi the closer A is to 
B w.r.t. pi, denoting same transitions with similar transition 
probabilities. If k ≠ m then A is not close to B w.r.t. pi thus δi = 
1. Hence, the distance δ between A and B is the minimum δi 
distance between A and B with regard to all pi, i.e., δ = minδi, i 
= 1, ..., N. 
A. Degree of Centroid Membership 

For each centroid cj ∈  C, a fuzzy set Bj is defined as the 
fuzzy variable inherence denoting the degree of centroid 
membership of a situation to cj. Let µBj: C → [0,1] be the 
membership function of Bj; µBj is the possibility of a situation 
x belonging to cj defined in (1). 
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Hence, Bj for the cj centroid is defined in (2), where m = |C|, n 
= |X(k)|. |C| is the cardinality of the C set. Bj is the fuzzy 
representation of the uij value (fuzzification). Specifically, the 
degree of inherence denotes the degree of membership of a 
user situation to the jth situation / centroid thus the supremum 
of Bj is uij. It should be noted that, µBj indicates how much the 
set X(k) of situations supports the degree of membership of a 
user situation to cj. Hence, the greater the value of kj becomes 
the more representative the cj situation is. The quantity (1-kj) / 
(m-1) indicates the importance of the rest centroids with 



regard to cj. Such quantity is uniformly distributed to each 
centroid d ≠ cj, d ∈  C. If kj = 1 then at least a user situation 
totally belongs to cj (and only to this centroid) thus µBj is a 
possibility distribution function [1]. 

The introduction of the Bj fuzzy set in the situational context 
reasoning is essential since a matrix, which represents a user 
situation, belongs to all centroids to a certain degree. The 
membership degree of the ith situation to the cj centroid 
represented by the quantity uij is expressed through the degree 
of the centroid membership (inherence) to Bj. A high value of 
kj means that the ith situation is sufficiently believed to be 
represented by cj. For this reason, we require that kj → 1.  
V. IMPRECISE REASONING ABOUT SITUATIONAL CONTEXT     
Each centroid represented by a matrix constitutes situational 

context with regard to a set of context transitions. Centroids 
denote diverse types of user situation. Users with similar 
situations are clustered into similar centroids. One can reason 
about situations since situation determination rules 
correspond to each centroid. The reasoning process takes into 
consideration the degree of centroid membership (inherence) 
of a user situation to a centroid. 

Consider a set of types (classes or terms) T = {t1, …, tL}, L 
> 0. Then, a situation classification Q is defined as a fuzzy 
subset over T that is: Q = {µQ(t1) / t1 + … + µQ(tL) / tL}, µQ ∈  
[0,1]. For instance, let T = {t1, t2, t3} with t1, t2, t3 stand for 
normal, dubious and weird user behavior, respectively. Then, 
Q = {0.8 / t1 + 0.1 / t2 + 0.0 / t3} expresses a kind of situational 
context that t1 type is concluded to a high degree by the 
situation determination rule (discussed later) and t2 type is 
concluded to a low degree. Situation classification 
represented by fuzzy set can be processed by a context-aware 
application in order to take decisions [3]. The situation 
classification types are application specific. 
Consider the generalized modus ponens rule: (p* ∧  (p → q)) 
→ q*). Such rule denotes that when p* is an approximation of 
p then q* is concluded also as an approximation of q since p*, 
p, q, and q* are fuzzy sets. Let Q be a situation classification 
and Bj be the inherence of a situation to the cj centroid. Hence, 
the situational context determination rule is: Bj → Q denoting 
that, if the user situation belongs to a centroid cj then, Q is 
the concluded classification type. Let A*

i be the fuzzy set that 
represents the ith situation membership degrees to each 
centroid cj, i.e., for all uij, A*

i  = {ui1 / c1 + … + uim / cm}. Then 
the generalized modus ponens rule is as follows: (A*

i ∧  (Bj 
→Q) → Q*

i  ), where Q*
i represents the concluded classification 

types for the ith situation. The inference of Q*
i given an 

observation A*
i is computed according to the Mamdani 

inference scheme [4] as the cross - product ⊗  of C and T 
defined in (3). Hence, the concluded fuzzy set Q*

i = {(µQi*(t) / 
t) | t ∈  T} is calculated in (4).   

( ) ( ) ( ) TC ∈∈∀µµ=µ⊗ t,c,t,ct,c QBj
)min(  (3) 

( ) ( ) ( ) TCC ∈∈∀µµ=µ ⊗∈ t,c,t,c,ct
j*

i
BQ )min(maxc

 (4) 

VI. DISCUSSION ON THE FRAMEWORK EXPERIMENTS  
Context clustering results in situation classification. Such 

classification forms a Knowledge Base of situation 
determination rules denoting what action a context-aware 
application could carry out. For instance, an actuation rule 
could be: If the user attends to a meeting then, forward 
important calls only, where the considered context could be 
the user involvement in a meeting. In addition, a specific user 
behavior or a activity pattern could be concluded by context 

transitions, e.g., If the user behavior is weird then, trigger the 
system to terminate all unsecured connections and lock all 
private areas or If the user behavior is normal, increase the 
degree of trust to her.  

The discussed framework is applied on real context data [5]. 
Each user carries a Personal Digital Assistant (PDA). The 
PDA is equipped with sensors for illumination, noise, position, 
a galvanometer for sensing touch and a three-axis 
accelerometer. Information concerning the user profile (e.g., 
agenda entries and private data) is obtained from the agenda 
application. The areas used are the office, the meeting room, 
the computer-room, the café, and a private area. Context 
values were recorded with a frequency of 1Hz approximately. 
Certain pieces of context forming hierarchy were used like 
walking indoors while carrying her PDA, using elevator or 
stairs, sitting in the café and browsing, entering the private 
area, locates in the computer-room, attending a meeting and 
presenting a report during a meeting. Three classification 
types of user behaviors represented by three fuzzy sets Q1, Q2 
and Q3 are used. Specifically, Q1 is represented by the fuzzy 
set: {1.0 / friendly + 0.4 / neutral + 0.0 / unsympathetic}, Q2 = 
{0.1 / friendly + 0.9 / neutral + 0.1 / unsympathetic} and Q3 = 
{0.0 / friendly + 0.1 / neutral + 1.0 / unsympathetic}. Each Qi 
associates with (at least) a situation determination rule. The 
FuzzyCLIPS1 fuzzy inference engine is used for evaluating the 
context determination rules. The fuzzy clustering algorithm is 
the FCM and the evaluation of the situational context 
determination rules is an implementation of the Mamdani [4] 
inference scheme. Fig. 2 depicts the membership degrees of 
100 users involved in situations to each centroid using the 
Euclidean distance (ε) and the proposed one (δ). Evidently, δ 
assumes better fuzzy partition since there is more than one 
matrix in each cluster (Q1, Q2 and Q3) that their membership 
degree has values near 1. This means that, all situation 
determination rules are equivalently important on the fuzzy 
reasoning since the maximum value of their corresponding 
degree of centroid membership kj ≈ 1, j = 1, ..., 3. 
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Fig.2. The degrees of membership after the fuzzy partition 

VII. PRIOR WORK 
Research on context sensing, fusion, interpretation, 

representation, reasoning and actuation covers a wide variety 
of issues related to information management. The model in [6] 
processes situational information using rule-based constructs 
by using two concepts: evidence and situation. Such concepts 
play a key role in an evidence-based belief formation process 
since it is based on rule-based representation and forward 
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reasoning. Nevertheless, the evidential reasoning in such 
model is missing. Various context models use not only 
contextual information for triggering actions but also for 
enhancing the reasoning capability of a system. In [7], 
context is represented as object in a multidimensional 
Euclidean space, where each dimension constitutes an 
attribute. Any subspace comprises the situation space, in 
which several attributes represented by interval values are 
defined. Although such model deals with merged subspaces 
(complex situations) no semantics related to generalization 
relations among situations is considered. The work in [5] 
represents situational context as a multidimensional vector of 
fuzzy sets. Principal Component Analysis and Independent 
Component Analysis are used for discovering context that is 
not explicitly available, resulting in context inference. All 
detected pieces of context are disjoint and, thus, no 
hierarchically structured representation and reasoning is 
attained. In addition, fuzzy sets are only considered to 
represent context and not to reason about it, as supported in 
the proposed framework. In [8], context is modeled as 
predetermined fuzzy sets referring to specific attributes. Such 
sets constitute the input for a Fuzzy Logic Controller, which 
provides continuous control signals for applications. 
Therefore, each fuzzy set is predetermined (defined by human 
expert) thus it does not reflect the actual information since no 
learning process is considered. In our model, FCM is used as 
an unsupervised learning process where user situations are 
constructed reflecting the behavior of a specific user.     

Most context models mainly focus on how to sense and 
infer context or a situation [9]. Therefore, issues related to 
enhancing the reasoning capability of a context-aware system, 
i.e., enhanced semantics among context (e.g., generalization 
relations) are essential. The work in [10] refers to a context 
model based on declarative-logic programming. However, 
such model deals only with high-level context representation 
(Prolog predicates) and reasoning. Consequently, it does not 
take into account contextual reasoning under uncertainty, as 
provided from our model. Moreover, using propositional 
logics, the authors in [11] describe situations as concepts 
considering the compatibility relations among situations, thus 
it could be considered as an extension to our representation in 
terms of conceptual context modeling. Related work on 
conceptual contextual reasoning is that of [12], which uses 
ontologies from the Semantic Web framework for context 
representation lacking of enhanced semantics thus, restricted 
knowledge reasoning capability. Moreover, the conceptual 
context model in [13] represents situational context through 
ontology-based modeling and is capable of Description-
Logics reasoning about situations generalization, 
compatibility and similarity. However, our research is 
complementary to such work, since unsupervised fuzzy 
context clustering results into centroids, which could be 
regarded as situations (concepts) in a taxonomy of concepts.  

  VIII. CONCLUSIONS     
We propose a framework for context and situation 

representation, inference and reasoning over context 
clustering. Our context model provides a hierarchical 
representation of pieces of contexts. The multi-level context 
representation supports context-aware applications to handle 
both specific and abstract knowledge about context. 
Production rules of contextual attributes form the user 

context. Moreover, the discussed framework captures 
uncertainty by using possibility theory and fuzzy sets-based 
modelling and deals with historical context by adopting a 
Markov chain model. Changes of user context over time (i.e., 
a sequence of context transitions) constitute the situational 
context. Fuzzy clustering among transitions of pieces of 
context is adopted in order to group users with similar 
situations. A situation is classified with respect to certain 
situation classification types, which are application specific. 
Hence, situation determination rules can be exploited by 
context-aware applications in order to either perform actions 
related to a user (or a group of users) or autonomously adapt 
to the current user context. 

The scalability of the discussed framework refers to the 
definition of multiple situation classification types, the 
selection of the context representation model and inference 
engine, and the choice of the clustering algorithm and the 
situational reasoning process. Various fuzzy clustering 
algorithms could be also used in the discussed framework 
(e.g., Fuzzy Adaptive Algorithm) while the reasoning process 
about situational context could be also any fuzzy inference 
engine (e.g., Tagaki – Sugeno [14]). The proposed framework 
handles uncertainty in context representation and enhances the 
reasoning capability of a system exploiting enhanced context 
semantics derived from the unsupervised learning of the 
contextual information clustering.  
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