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Abstract 
 

A self-evolving reputation scheme for trust estab-
lishment in distributed peer networks is presented and 
evaluated. The framework, called Ad-hoc Trust 
Framework (ATF), incorporates subjective behavior of 
end-users, direct observations of behaviors, recom-
mendations, and history of evidences to assess the 
trustworthiness of peer entities. It considers several 
idiosyncrasies of the wireless self-organized networks, 
such as lack of computational resources. ATF is asso-
ciated with a generic model for the evaluation of the 
trustworthiness of adjacent or distant nodes. It relies 
on a sophisticated reputation method, called 
TrustSpan, to contact only trusted peers for recom-
mendations, and, thus, it minimizes communication 
costs for trust building, accelerating the trust evolution 
process. To evaluate the performance of the ATF 
framework we have deployed a large number of simu-
lation scenarios. The performance assessment results 
show that ATF achieves to rapidly identify selfish 
nodes with high accuracy, and with relatively low 
communication costs.  
 
1. Introduction 
 

In Mobile Ad hoc and self-organised networks, 
(MANETs), mobile nodes are continuously associated 
or disassociated with each other, according to their 
topological arrangement. The incentive of a newcomer 
node that desires to join the network is to offer func-
tionality (e.g., routing and packet forwarding) to the 
existing nodes, which, in their turn, reciprocate this by 
offering equivalent functionality to new members. This 
cooperation enforcement builds up the trust that should 
be assembled by the nodes, and which is essential for 
the steady-state operation of a MANET: adjacent 
nodes build up trust with time to enforce cooperation, 
and improve the security, connectivity and quality of 
service provided by the network. On the other hand, 
the value of the self-evolving trust diminishes when 

adjacent nodes become distant due to mobility, since 
several unreliable nodes might intermediate on the 
communication path.  

Thus, the self-established trust between any two 
nodes for the routing and packet forwarding services 
might be lost with time, influencing network’s per-
formance. Moreover, nodes behave passionately rather 
than rationally [1]. Selfish, malicious and hacker nodes 
may initially accept the cooperation enforcement prin-
ciples in order to be associated with a mobile ad-hoc 
network, but their real intentions might be guileful. A 
selfish node is disinclined to spend its resources (e.g., 
battery) in order to serve network’s operations and to 
maximize social welfare (e.g., forward packets not 
destined for it), but it demands the execution of net-
work tasks that maximize its own profit (e.g., asks for 
the delivery of packets originated from or destined for 
it). Malicious nodes have as a primary goal to damage 
network’s operation, rather than to avoid the depletion 
of their resources (e.g., battery). Flooding and sleep 
deprivation torture [2] are techniques commonly used 
by malicious nodes. Hacker nodes’ objective is the 
interception of the information exchanged between the 
network nodes. Hacker intents are materialized 
through sinkhole and wormhole, impersonation and 
Sybil attacks [3]. 

Self-evolving, reputation-based, schemes are consid-
ered suitable for trust establishment in spontaneous 
networks, such as MANETs, where key or certificate 
distribution centers are ephemerally present and com-
putation resources (e.g., energy, memory) are scarce. 
Such schemes are based on the determination of the 
trustworthiness of nodes, regarding their offered func-
tionality. A primary goal of rational nodes is to coop-
erate in order to avoid, or even mutually isolate, noto-
rious nodes (i.e., selfish, malicious or hacker) from the 
routine network operations. Such cooperation requires 
the exchange of recommendations, and the identifica-
tion of trusted recommenders. Additional goals include 
the reactive minimization of the effects introduced in 
normal operations by the notorious nodes, or the pro-



active cooperation enforcement of selfish nodes 
through credit-based mechanisms.       

In this paper a generic, distributed, framework for 
self-evolving trust establishment, named Ad-hoc Trust 
Framework (ATF), originally proposed in [16], is fur-
ther discussed and evaluated. ATF incorporates self-
evidences, recommendations, subjective judgment and 
historical evidences to continuously evaluate the trust 
level of peers. To capture such semantics, ATF is 
armed with a novel trust computation model. The 
model consolidates user’s natural behavior, through a 
Trust Policy.  

ATF does not use any hard trust building method, 
such as symmetric or public cryptography, or message 
authentications schemes. Thus, it avoids complex com-
putations and the expenditure of resources (power, 
CPU and memory). In that sense, ATF is usable in dif-
ferent types of distributed, or peer systems (ad hoc 
networks, pervasive computing devices, autonomic 
systems), although here it is primarily exploited in the 
context of ad hoc networking.  

The structure of the paper is as follows: First we pre-
sent the proposed ATF architecture and its functional 
modules. In Section 4 we present the functionality of 
the trust building module. In Section 5 we describe 
how the trust model incorporates behavioural elements. 
Subsequently, in Section 6 we discuss the novel 
TrustSpan mechanism that assists ATF to rapidly iden-
tify and use recommendations provided only by trusted 
recommenders. In section 7 we define the simulation 
environment and provide the performance evaluation 
of the ATF framework. Finally, we discuss the open 
issues concerning ATF, and provide some directions 
for further research and assessment.  
 
2. The ATF Architecture 
 

ATF uses a layered architecture and consists of the 
following components: Trust Sensors (TS), Trust 
Builder (TB) and Reputation Manager (RM). The pro-
posed framework is fully distributed. Every node hosts 
these components and provides a number of routine 
functions (services), such as packet forwarding, rout-
ing, etc. Moreover, every node implements a special 
function, called Recommendation Function (RF). This 
is a simple service that provides recommendations to 
third parties, upon request.  

ATF follows [8] for the definition of the reputation of 
a node’s function: Reputation = {NodeId, Function, 
Trust Value}. Thus, the reputation of a function f of 
node n is defined as R(n,f)= {n, f, TVn,f}, where TVn.f, is 
the Trust Value (TV) for the function f of node n.  

For the rest of the paper we use the term detector to 
denote a node that directly monitors the behavior of 
another node’s functions, called a target. In such a 
case the detector captures Direct Evidence (DE) about 
the trustworthiness of a particular function of the tar-
get. A requestor is a node that asks for recommenda-
tions. A recommender issues recommendation re-
sponses (upon request). Adjacent are the nodes that are 
in the coverage (one-hop) area of each other.  

In general, a trust building mechanism could be laid 
out based on two diverse architectural directions. The 
first relies on an on-demand, and the second on an 
event-driven reputation system. The difference be-
tween these two approaches lies in the way that nodes 
are being informed for changes in Trust Values (TVs). 
The ATF architecture is capable of supporting on-
demand recommendations.  

 
Figure 1. ATF architecture 

 
2.1 ATF Architecture components  
 

The architecture consists of the following modules 
(see Figure 1):   
Trust Sensors (TS). The majority of the proposed 
reputation systems agree that the most significant fac-
tor for trust building is the direct experience (or direct 
evidence). In the SECURE project [9], this evidence 
monitoring is performed independently by each node 
through a “Monitor” [10], which logs every activity in 
an “Evidence Store”. In [4] a Watchdog mechanism is 
proposed as an observation device for routing behav-
iour of nodes participating in ad hoc networks. In ATF, 
for every function offered by an adjacent node there is 
a Trust Sensor that monitors its execution/operation. A 
TS operates similarly to any other common sensor: 
translates a (physical) phenomenon in a machine inter-
pretable form. In our case this phenomenon is the 
trustworthiness of a node with respect to its quality of 
service. A TS monitors the behaviour of another node 
(through real time measurements or statistical analysis 
of logs) and compares it to a predefined reference atti-



tude, (i.e. expected functionality). In that sense, the 
ATF scheme uses TSs to assist a node to define the 
credibility of other collaborating parties. The proposed 
generic mechanism requires the quantification of the 
difference between the observations and the expected 
functionality. An intuitive and easy-to-implement ap-
proach to this issue is the categorization of observa-
tions to Successes and Failures relating to the expected 
functionality [11]. A TS maps the captured evidence 
(i.e., observations) to a numerical value and forwards 
this value to the Trust Builder for further trust compu-
tation.  
Trust Builder (TB). This component computes the TV 
of other nodes’ functions. TVs are stored in a Trust 
Matrix, which Trust Builder maintains and updates, 
and are used when there is an intention for cooperation 
or interaction with other nodes. A TV value is distinct 
for each discrete function per node. A node, for exam-
ple, may be trustworthy to perform packet forwarding, 
but unreliable to contribute on routing. TV computation 
depends on several factors, such as direct evidence, 
recommendations, historical data and subjective crite-
ria. The weight that each factor contributes on the 
evaluation of TV is further explained in [16]. Each 
node follows its own Trust Policy, which specifies the 
user’s subjectivity (e.g., distrustful, deceivable) and the 
weights.  
Reputation Manager (RM). The RM’s main role is to 
provide recommendations from third parties to the TB 
in order for the latter to compute the required TVs. In 
the ATF on-demand scheme, TB requests recommen-
dations for a target node when it has inadequate infor-
mation for it. Thereafter, RM selects the nodes to con-
tact (recommenders) in order to obtain requested val-
ues. These should be as trusted as possible and close 
enough so as to limit communications overheads. For 
that purpose, the RM takes into account the trust values 
of the recommenders’ Recommendation Function and 
their distance (number of hops). When a recommender 
receives a request for recommendation, its RM con-
tacts TB and obtains the TV for the requested function 
of target node, if any. Next, the recommender returns 
this value to the requestor node. TB uses the recom-
mendations collected by the RM and the latter uses TVs 
already computed in order to inform other nodes. 
Recommendation Function Trust Sensor (RFTS). 
This special-purposed trust sensor evaluates the trust-
worthiness of a node regarding its recommendation 
function. RFTS, as any other TS, categorizes a direct 
observation as Success or Failure. The RM of a detec-
tor asks from recommenders the recommendations that 
correspond to a specific function of a target. A recom-
mendation is returned back only when the recom-

mender has adequate DE about the target, so as to re-
duce rumour spreading. These values are then passed 
to the ΤΒ and the RFTS of requestor. RFTS stores in a 
matrix the values that received from each recom-
mender. Whenever the detector node completes a di-
rect interaction with the target node, the TS for the 
specific function returns Success or Failure to the TB 
according to its observation. The TB then builds the 
DE for the target node and returns this value to the 
RFTS for the evaluation of the recommendation func-
tion of the recommenders. RFTS compares this DE 
with TVRF stored for each recommender. If the two 
values do not have considerable deviation (expressed 
as a threshold in Trust Policy), then RFTS returns Suc-
cess to the TB, else returns Failure. A detector node 
(i.e., evaluator) should be able to check the TV of the 
recommendation function of those nodes offering rec-
ommendations (recommenders). Thus, in [16] we have 
proposed a testing mechanism that estimates and up-
dates the trustworthiness of recommenders.   

 
2.2 Related work  
 

Similar trust management architectures are presented 
in [1] and [5]. Jøsang in [1] proposes a recursive hier-
archy of trust that is based on historical knowledge; the 
derived trust can be used for further trust derivation. 
The underlying trust, to a certain extent, not only re-
flects security (i.e., protection against malicious at-
tacks), but also other aspects of dependability as long 
as these aspects contribute to increasing the final trust. 
In [5] the authors consider an architecture that consists 
of the Monitor, the Reputation System, the Path Man-
ager, and the Trust Manager. The Monitor detects 
damaging behavior (intrusion, DoS, etc). The Trust 
Manager deals with incoming and outgoing ALARM 
messages, sent by a node to warn others of malicious 
nodes. The Reputation System manages a table con-
sisting of entries for nodes and their rating. The rating 
is modified only when there is sufficient evidence of 
malicious behavior. The Path Manager ranks paths 
according to security metrics (e.g. reputation of the 
nodes in the path) and deletes paths containing mali-
cious nodes.  

 
3. Trust Computation in Trust Builder 
 
3.1. The Qualitative Perspective 

 
ATF incorporates several user-defined and time-

dependent weights. Time-dependence is important, 
since it allows the modelling of temporal trust strate-
gies, which can be followed by the participating nodes. 



Additionally, the weights are defined separately for 
each node in its Trust Policy (TP). For the ATF 
scheme, time is treated as a discrete sequence of direct 
interactions between the nodes. Thus, time elapses in a 
different rate for every separate node. We use only 
direct interactions as a time reference, since they are 
generally regarded more important than the indirect 
ones (recommendation exchanging) for the trust build-
ing process. Moreover, interactions are categorized to 
positive and negative (according to the Success/Failure 
model incorporated by each TS) to enable flexible 
computation of trust.  

The majority of the trust computation approaches ac-
knowledge that two main components should be taken 
into consideration: the Direct Evidence (DE) and the 
Recommendations (RECs) from third parties. The DE 
is calculated from the TSs’ feedbacks, as described in 
previous section, and is useful for evaluation of adja-
cent nodes’ functionality. RECs are communicated 
between the entities participating in the trust network, 
according to a reputation dissemination protocol, im-
plemented in RM.  

Many socio-cognitive approaches for trust, e.g., [12], 
dictate that trust computation should also include a 
subjective component. Each node has a unique, sub-
jective, way to trust others. Here, we adopt this ap-
proach, and a separate Subjective-factor component 
(SUB) is introduced in the trust computation model. 
This component is time-dependent, as well, so as to 
enable time-variant trusting behaviour of nodes (e.g., a 
node may want to trust a newcomer node only up to a 
point, until it establishes a specific number of success-
ful interactions with it). SUB is dictated by the TP of 
each individual node, and can model typical trust 
characters, such as unwary, suspicious, unbeliever, etc. 
This component provides flexibility in the trust strat-
egy of a user, without imposing significant complexity 
in the overall trust computation.  

 
3.2. Historical data as input for trust evalua-
tion 
 

History is an additional concept that has drawn at-
tention in the trust community. Several researchers use 
history as an implicit component in the trust computa-
tion. Some assign specific weight to past direct obser-
vations or recommendations in order to provide 
smoothed TV fluctuation [6]. The CORE system uses a 
time dependent function that gives higher relevance to 
past observations to evaluate the direct reputation of a 
target node’s function [14]. This function takes into 
account only the B recent observations, and it is repre-
sented through a Finite Impulse Response filter (FIR). 

Authors in [14] believe that if more relevance is given 
to past observation then sporadic misbehavior in recent 
observation will not influence the evaluation of the 
trust value. In [15], a similar approach is used. Older 
observations become less important that newer ones 
and observation older than a threshold T are ignored. 
In [13] a different approach is followed to allow for 
reputation fading. Through a modified Bayesian ap-
proach less weight is given to evidences received in 
the past. The procedure that updates the trust rating 
depends on m, i.e., the order of magnitude of the num-
ber of observations over which it is assumed stationary 
behavior. The open issue with this approach is that 
stationary behavior might not be observed when nodes 
might selfish or misbehave. ATF combines the two 
approaches. We believe that a significant weight 
should be assigned in the current observation. This will 
enable an evaluator node to rapidly identify when a 
target node starts to misbehave. Additionally, the his-
tory of the observations that will be considered for the 
evaluation of a trust value of a target node, when a 
new observation is produced, depends on the subjec-
tive behavior of the evaluator node. Thus a distrustful 
node might need long past observations, whilst a de-
ceivable node might need only the newer ones. Thus, 
when the new observation (i.e., TS(n,f)) occurs, a dis-
trustful node takes into account the history h1 of the 
direct evidences, as seen in figure 2, whilst a deceiv-
able node takes into account the history h2.  

0 0 0 1 1 0 0 1 0 1 0 1 1 1 1 1 1 1 1 1 0 0 1 1 0

h1
h2

TS(n,f)

t

DEn,f(t-i)

 
Figure 2. Different observation windows as 

used for the assessment of the DE trust value 
 

Thus, for each new observation or recommendation 
(i.e., New Value) the following equation is used to 
relate historical data with current observations (Eq.1):  
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For simplicity we write NewValuen,f(t)=WAH(n,f,t) to 
denote the weighted average over the last H data and 
the new value recorded at time t. Equation 1 was cho-
sen and verified after an analytic assessment that we 
contacted in [16] using a preconfigured scenario and 
different values of w and H.  According to the analysis 



in [16], moderate values of w (e.g., 0.2) ensure that the 
calculated values belong to a range that is not deviated 
from the real behavior. Thus, moderate values of w in 
Eq.1 ensure that the direct evidence will capture the 
actual behavior of the target node, without significant 
deviations due to sporadic misbehaviors or rational 
errors. Additionally, the historical average component 
of Eq. 1 introduces different sharpness on the estima-
tion. When only the recent observations are required 
(e.g., H=3, corresponding to an impressionable node) 
then the DE approaches faster the minimum or maxi-
mum values, illustrating sudden fluctuations. On the 
other hand, when the evaluator takes into account long 
history (e.g., H=8 for a disbeliever node) then the DE 
approaches less rapidly the threshold values, illustrat-
ing smooth fluctuations.  
 
3.3. The Quantitative Perspective 

 
This section describes the mathematical formulae for 

the proposed trust computation model. The trust time, 
as already mentioned, counts the directly observable 
interactions. The proposed model defines Positive 
Time (PT), Negative Time (NT) and Total Time (TT). 
The latter simply adds the other two time scales. We 
monitor the temporal evolution of every function and 
node, so these time scales are represented as matrices 
of size NxF, where N is the number of nodes in the 
network, and F corresponds to the overall number of 
supported functions. 

,( )n fPT PT N≡ ∈ , ,( )n fNT NT N≡ ∈ , 

,( )n fTT TT N≡ ∈ , 1... , 1...where n N f F= =  

Each node should have at least one time matrix. Each 
time a corresponding interaction (Success, or Failure) 
with a node’s function is observed, the corresponding 
element of the time matrix is increased by one unit. 
Hereafter, Tn,f will denote PTn,f, NTn,f or TTn,f. Each 
detector maintains a NxF Trust Matrix (TM), represent-
ing the TV that the node computes per monitored func-
tion of a target node. Each element TMn,f (1≤n≤N and 
1≤f≤F) refers to a specific function f of a particular 
node n, and it varies with time. The formulae for TM 
and TV are: 

, , ,' '( , , ) ( * * ) * ( )n f n f n fTV TV n f t a DE b REC SUB t≡ = +

,n fwhere t T= , 

( , , ) ' (1 ') ( ' 1),TV n f t TV u TV u TV= ⋅ − + −  

, ,( ), ( , , ) [0,1]n f n fTM TM and TM TV n f t≡ = ∈  

As we discuss in the next paragraphs: 

, ,[0,1], [0,1]n f n fDE REC∈ ∈ , and , ( ) [0, 2]n fSUB t ∈ . 

Thus, TV’ [0, 2]∈ , as well. The parameters a and b 
(see TV formulae) are step increasing and decreasing 
functions, as it will be clarified in section 5. In order to 
map the TV values within the [0,1] interval we use a 
unit step function u(t) (see Eq. 2) to normalize TV’ into 
the final TV. The range of TV(n,f,t) is [0,1], where 0 
means that the detector distrusts a target node n for a 
specific function f, and 1 means that it fully trusts n for 
f. 
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 (Eq. 2) 

DEnf is the DE for a target node n and its function f, 
as observed by the corresponding TS of the detector. 
The NxF matrix DE, which is stored in every node, is 
defined as ,( ) [0,1]n fDE DE≡ ∈ , where the matrix 

elements DEn,f are computed according to eq. 1, as 
follows: 

, ( ) ( , , )n f HDE t WA n f t= , and ( , ) {0,1}TS n f ∈  

The lower value (i.e. 0) denotes Failure, while the 
higher (i.e. 1) denotes Success. The coefficients w1 and 
w2 adjust the weights assigned to recent and historical 
Direct Evidence values, respectively. RECn,f stands for 
the aggregated recommendations we have for the func-
tion f on node n from third parties. These recommenda-
tions are either third parties’ DEs or RECs. One could 
argue that allowing a third party to include RECs re-
ceived from others (second-hand RECs) in its own 
recommendations would enable rumor-spreading ef-
fects. However, this is necessary in cases we have no 
other evidence for the trustworthiness of a node. We 
also keep the history of RECs received. Thus, each 
node has an NxF REC matrix, defined 
as ,( ) [0,1]n fREC REC≡ ∈ , where the matrix elements 
RECn,f are computed according to equation 1 as fol-
lows: 

, ( ) ( , , )n f HREC t WA n f t=     (Eq. 3) 

The SUB component of the TV computation formula 
incorporates the node’s subjectivity. This subjectivity 
is a key differentiator between the various nodes and 
stems from the socio-cognitive approaches to trust 
modelling [12]. SUB is an NxF matrix with elements in 
the { : [0, 2]}f T →  domain. Thus, its elements are 
time-functions. The range [0,2] allows the detector to 
distrust (i.e. value 0) the target node, trust it (i.e. value 
1), be enthusiastic about the target node (i.e. value 2) 



or develop any other intermediate form of subjective 
trust strategy. We have chosen the value 2 as an upper 
bound to allow enthusiastic nodes but not to such a 
degree that would endanger the network’s rationality. 
In other words we want to have nodes with diverse 
trust strategies, but we want to restrict the deviation of 
this diversity. An example SUB time-function could be 
defined as: 

, ,( ) ( 2),n f n fSUB t u t t PT= − =   

This function indicates that no matter what DEs or 
RECs a requestor node has for a function of a target 
node (n,f), it will not trust the latter until two success-
ful (positive) direct interactions have been observed. In 
case the aforementioned defined SUB component is 
used indiscriminately for all target nodes and provided 
functions, it will be identical for all the elements of the 
detector’s SUB matrix. The set of the SUB functions is 
defined in the TP and it can be adjusted depending on 
the target node and the monitored function. However, 
in practice, it is highly unlikely that a node will have 
NxF different SUB functions. Instead, a detector will 
usually use identical SUB function for every target 
node or every function.  
 
5. The Trust Policy 
 
As already mentioned, for each node a Trust Policy 
(TP) defines the functionality of its Reputation Man-
ager and Trust Builder. A CP captures the conceptual 
subjective behavior of the entity (e.g., end-users) and 
incorporates the real-life attitude. The parameters of 
the TP are summarized in Table 1. The parameter HFI 
is used by the proposed RM module and its application 
is described in the following section.  

 
Table 1. The parameters of the Trust Policy   

Parame-
ter 

Semantics 

MI The Minimum Interactions required for 
being confident about the TV of a target  

a The impact (weight) of the DE on the 
TV ( 0 1, 1a a b≤ ≤ + = ). This is an 
increasing stepwise function over MI 

b The impact (weight) of the REC on the 
TV ( 0 1, 1b a b≤ ≤ + = ). This is an de-
creasing stepwise function over MI  

w The weight of history and the current 
direct or indirect evidence ( 0 1w≤ ≤ ), 
as discussed in Section 4.2  

TVRF 
threshold 

The minimum allowable TVRF assessed 
to a node in order to be a recommender  

SUBn,f(t) A set of time-functions that define the 
trust strategy of a node. SUB(0) is the 
trust strategy for newcomers, i.e., as-
signs an initial TV to a newcomer 

HFI Honorable Friend Index. The minimum 
number of trusted recommenders, re-
quired to be consulted by a requestor to 
reliably evaluate the trustworthiness of 
an unknown node 

 
The parameters a and b (see TV formulae) are step 
increasing and decreasing functions on MI. This policy 
was chosen because when a detector node realizes the 
existence of a newcomer only the recommendations of 
the trusted recommenders should be used (high values 
of parameter b). Thus, in the initial phase the RECs are 
essential. On time, when the detector starts to interact 
directly with the newcomer, the direct evidences (DE) 
become more important, and this happens only when 
the MI value is exceeded.  
 
6. Reputations over Trusted Nodes 
 

As illustrated in Eq. 3 a requestor is based on rec-
ommendations to compute the initial TV for newcomer 
nodes. However, only trusted nodes (i.e., nodes illus-
trating a high TV value for the recommendation func-
tion) should provide these recommendations. This will 
minimize the effects of rumour spreading and avoid 
potential DoS attacks [7]. Moreover, the selected re-
commenders should be as close as possible to the re-
questor so as to have limited communications over-
head. Buchegger and Le Boudec [5] proposed the use 
of a Path Manager module to rank routes according to 
security metrics (e.g., reputation of nodes in the path) 
and to delete paths containing malicious nodes. A path 
ranker, called Pathrater, is also proposed in [4] to miti-
gate the effects of routing misbehaviour.  

TrustSpan is a mechanism that is used by the Reputa-
tion Manager (RM), and enables a requestor to consult 
only trusted nodes whenever recommendations for the 
evaluation of newcomer nodes’ trustworthiness are 
required. We consider as newcomer the node for which 
the requestor has no trust-related knowledge, or has 
inadequate experience (i.e., too few past direct interac-
tions to assess its reliability). When a newcomer be-
comes adjacent to a requestor, the latter does not know 
a priori whether it is trustworthy and, therefore, it exe-
cutes this algorithm in order to collect recommenda-
tions from trusted recommenders. A requestor charac-



terizes a node as a trusted recommender if the TV for 
its recommendation function is high. We remind that 
RF is monitored and evaluated, just like any other 
function, via the RFΤS sensor.  

The TrustSpan algorithm is presented in Listing 1. 
The weights in the line A, the HFI and the TVRF, are 
defined through the TP. The Distance Matrix (DM) 
includes the distances of other nodes. HFI denotes the 
minimum number of recommenders required by a re-
questor node in order to enable a reliable evaluation of 
the trustworthiness of a target node’s function, and it is 
independent of the target node or its function. 

 
Listing 1. TrustSpan Algorithm 

 
According to the TrustSpan approach, each time a 

requestor asks recommendations for a function f of a 
target node n, considers only the trusted recommend-
ers. Thus, it tries to minimize both the delay in the 
propagation of the requested recommendations and the 
communication overheads. TrustSpan is invoked (i.e., 
recommendations are solicited) only when a detector 
has inadequate number of direct interactions with a 
target node (newcomer). This number is defined in TP 
through the parameter MI. MI also affects which nodes 
reply to recommendation requests. In particular, the 
recommenders selected by TrustSpan that have less 
than MI direct interactions with a target, will not give 
recommendations about it. 

After the TrustSpan algorithm has returned the iden-
tified IDs corresponding to the trusted recommenders, 
the Reputation Manager (RM) requests the recommen-
dations (through unicasting) from the corresponding 
RMs of the trusted recommenders. A request includes 
the target node ID and the specific function, which the 

requestor wants to evaluate. When the required rec-
ommendations arrive or a respective timeout expires, 
the requestor’s RM forwards the incoming information 
to the TB where the actual trust computation takes 
place. 

 
7. ATF evaluation  
 
7.1 Simulation environment  

We performed our evaluations for the ATF frame-
work using the J-SIM wireless package simulator [17]. 
We used the 802.11 MAC layer and CBR sources to 
generate traffic. The IP routing protocol that was used 
was the AODV. The field configuration was 50 nodes 
over a 300m x 300m terrain. The radio transmission 
range of each node was set equal to 50m. Initially, the 
nodes were distributed randomly on the terrain grid. 
Nodes mobility was simulated according to the random 
waypoint mobility model, in which each node moves 
to a randomly selected location at a configured speed 
(i.e., 2 m/s) and then pauses for a configured pause 
time (i.e., 5 secs), before choosing another random 
location. During the simulations, the ATF framework 
estimates the Trust Value (TV) of the packet forward-
ing function. Thus, DEs, RECs and reputations were 
used or exchanged for the forwarding function of each 
of the 50 nodes in the terrain. The number of selfish 
nodes was set to 10, and each of them was configured 
to drop a percentage (30%) of the packets that received 
but not forwarded. For data traffic, we used 20 CBR 
sessions. Each session generates packets at rate of 4 
pkts/secs. The duration of each session is equal to the 
duration of simulation (i.e. A sec). Table 2 summarizes 
the parameters of the simulation environment. 

 
Table 2. Simulation environment parameters  

Number of nodes 50 
Number of selfish nodes 10 
Maximum speed 2 m/sec 
Pause Time 5sec 
Terrain dimensions 300m x 300m 
Communication Type CBR 
Source-Destination pairs 20 
Data Packet Rate  4 pkts/sec 
Radio transmission range 30m 

  
During the simulations we have measured:  

• The communication overhead introduced by the 
ATF on-demand recommendation requests, and the 
corresponding responses.  

• The time required by each node to identify the ac-
tual behavior of a peer (i.e., how rapidly ATF en-

Inputs: HFI, DM, TM, TVRF  threshold 
Outputs: IDs of nearest trusted recommenders 
 
procedure TrustSpan (){ 
    for (j=0;j<numberOfNodes;j++) 
        TVRF[j] = TM[j][RF]; 
    for (i=0; i<length(TVRF); i++) 
A:   Candidate_Recommenders[i]=0.75*TVRF[i]+0.2*(1/DM[i]); 
    int trusted_IDs[] = new int[HFI]; 
    for (k=0; k<HFI; k++){ 
        if(max(Candidate_Recommenders) >= TVRF_threshold){  
            int maxID = indexOfmax(Candidate_Recommenders);     
            trusted_IDs[k] = maxID;            
            Candidate_Recommenders[maxID] = 0;   
        } else break; 
    } 
    return trusted_IDs; 
}



ables peers to identify the real TV that corresponds 
to a selfish node’s function)   

• The accuracy of the ATF, i.e., the ability of peers to 
correctly identify the behavior of peers (in terms of 
success or failure).   

Even if the parameters a and b (see TV formulae) are 
step increasing and decreasing functions on MI, re-
spectively, in the simulations we used predefined static 
values. 

  
7.2 Simulation Results  

The communication overhead that the ATF frame-
work introduces due to the on-demand recommenda-
tions is depicted in Figure 3. For this scenario H=4, 
w=0.8, HFI=3, and a=0,9. The overhead is measured 
for two different MI indexes (20 and 30 direct evi-
dences). As shown in figure 3, the overhead is de-
creased with time, and eventually reaches the 20% of 
the actual IP traffic. This happens because the direct 
evidences that the pairs of the nodes obtain are in-

creased with time, and thus fewer recommendations 
are requested form trusted peers. Additionally, for 
higher MI values the overhead is higher, since for 
higher MI the minimum direct evidences required for 
being confident about the TV of a target is higher, and 
thus more recommendations are requested form trusted 
peers.  

Figure 4 illustrates the convergence speed of ATF, 
i.e., the time needed for the fair nodes (i.e. 40 nodes) to 
detect a selfish node (i.e. the 10 unreliable nodes). That 
is, the time needed for a node to calculate a TV value 
for the forwarding function of selfish nodes (n21, n22, 
…, n30) that is equal to 0.7, since we assumed that each 
selfish node drops 30% of the received IP packets. In 
the worst-case scenario, it requires 60 seconds to con-
clude that a node behaves selfishly. This worst case 
occurs when selfish nodes (i.e., n27, n29 and n25) do not 
generate enough direct interactions with fair nodes, 
due to their mobility pattern. Thus, even if MI was set 
to 20 interactions, selfish nodes n27, n29 and n25 did not 
generate a large number of direct interactions during 
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Figure 4. ATF convergence rate  



the initial simulation period. As figure 4 illustrates 
higher values of parameter w enables for faster con-
vergence to the real Trust Values (i.e., 0.7). This is 
because low values of w in Eq.1 ensure that the direct 
evidence will capture the actual behaviour of the target 
node, without significant deviations due to sporadic 
misbehaviours or rational errors. Results in figure 4 
were measured for H=4, MI=20, HFI=3, and a=0,9. 

Figure 5 illustrates the accuracy of the ATF frame-
work. It depicts the average TV of the forwarding func-
tion as measured at the end of the simulation, and only 
by fair nodes which have experienced MI interaction 
with each other node. Here we used H=4, MI={20,40}, 
HFI=3, w=0.3, and a={0.9, 0.8}.  

For the results depicted in figure 5 we averaged the 
TV values that three pairs of CBR source-destination 
nodes calculate for the forwarding function of 30 
peers. From these 30 peers, the first 20 were config-
ured to be reliable and the last 10 (i.e., n21, n22, …, n30) 
were selfish. These selfish nodes were set to drop 30% 
of IP data packets. If one of the estimators (one source 
or destination of the three CBR traffic pairs) did not 
obtain at least MI interactions with one of the 30 nodes 
(ni, i≤30), then the averaged TV was not calculated. 
Thus, for node n0 we did not obtain any TV results, 
whilst for node n5 we have TV estimation only when 
we recorded twenty direct evidences (i.e., MI=20). 
Figure 5 shows that ATF is accurate, since it manages 
to predict the actual behavior of nodes. For the for-
warding function of the fair nodes that there were suf-
ficient interactions (i.e., nodes n2, n3, n4, n5, n8, n9, n12, 
and n16) the TV value was estimated near to one, which 

was the real value.  For the forwarding function of the 
selfish nodes that there were enough interactions (i.e., 
nodes n22, n24, n25, n26, n28, n30) the TV value was esti-
mated near to 0.7, an estimation that approximates the 
exact behavior (since each selfish node dropped 30% 
of packet).     
 
8. Conclusions  
 

In this paper we discuss and evaluate the ATF frame-
work for trust and reputation management in self-
configured networks. A key difference from similar 
proposal is the materialization of a subjective trust 
factor, which imports natural behaviour of end-users 
and models different trust strategies. Additionally, ATF 
introduces the concept of trusted recommenders. The 
specialised RFTS trust sensors tests, monitors, and 
evaluates the trustworthiness of peers in respect to the 
recommendation function, and thus it contributes to the 
avoidance of avoid rumour spreading, phenomena. 
Furthermore, the TrustSpan mechanism is introduced 
to minimize communication costs and to accelerate the 
trust evolution process, since only trusted nodes are 
conducted for recommendations. Finally, the historical 
values are incorporated smoothly to the trust computa-
tion model, enabling rapid identification of actual mis-
behaving nodes, without penalizing those nodes that 
sporadic misbehave due to network errors that occur.   

Performance assessment of the ATF framework 
through various simulation scenarios shows that the 
on-demand recommendation requests and the corre-
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sponding responses introduce small communication 
overheads, especially when the MANET initiates its 
routine operations. This is because recommendations 
are required only from trusted peers. Additionally, 
with time the pairs of nodes start to maintain direct 
interactions and evidences, and thus the recommenda-
tions from peers are not essential. Moreover, simula-
tions shown that the ATF enables peers to rapid iden-
tify the trust values (i.e., trustworthiness) of functions 
that provided by peer nodes (e.g., forwarding). Thus, 
ATF provides sufficient means to fair nodes for rapid 
identifying and isolating selfish or malicious nodes. 
Finally, ATF ensures high success rate on predicting 
nodes’ behaviour, since each reliable node identifies a 
selfish peer with probability equal to one.  

Currently, we are running scenarios using a different 
network setup, i.e., less dense network, various mobil-
ity model’s parameters and percentages of selfish 
nodes, to identify how the ATF performs under differ-
ent simulation scenarios. Finally, simulations that are 
under deployment will aim to measure the effect of the 
RFTS sensor (see section 2.1.4), to evaluate the com-
munication costs of the RTFS, to estimate the level at 
which the ATF can increase the network throughput, 
and to measure energy consumption costs.    
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