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ABSTRACT 

In this paper* we discuss a system that exploits observations derived from sensors, in order to estimate a 
key factor for pervasive computing and context aware applications: the location of a user. The term 
“sensors” includes Wi-Fi adapters, IR receivers, etc. The core of the system is the fusion engine which is 
based on Dynamic Bayesian Networks (DBNs), a powerful mathematical tool for integrating 
heterogeneous sensor observations. In closing, is provided an evaluation of the system as it comes out 
from the experimental results. 

I. INTRODUCTION 

In pervasive computing environments, location is essential information as it is an important part of the 
user’s context. Applications can exploit this information for adapting their behaviour. Such applications 
are termed location-aware applications (e.g., friend-finder, asset tracking). 
The location of a user is derived by various positioning methods. The majority of indoor positioning 
systems relies on different technologies usually of the same kind (wireless LAN signal strength 
measurements [2], IR beacons [3], or ultrasonic signals).  
At this point we will quote the definitions of accuracy and availability, the most important characteristics 
of a positioning system.  

• accuracy is a measure of how close is the position provided by the system to the user’s true 
position (e.g. error smaller than 10 meters). 

• availability denotes the percentage of time the system provides location results at a specified 
accuracy level, (e.g. error smaller than 5 meters on 80% of the time). 

The accuracy and availability are tradeable and it is clear that if we need less accuracy the availability of 
the system increases. 
During the last years several location systems have been proposed that use multiple technologies 
simultaneously in order to locate a user. One such system is described in this paper. It relies on multiple 
sensors readings from Wi-Fi access points, IR Beacons, RFID tags, etc. to estimate the location of a user. 
This technique is known better as sensor information fusion which aims to improve accuracy and 
availability by integrating heterogeneous sensor observations. The proposed location system uses a fusion 
engine that is based on Dynamic Bayesian Networks (DBNs), thus, substantially improving the accuracy 
and availability. 
 The paper is organized as follows: Section 2 discusses the related work and the differences of the 
proposed system from other positioning systems. In Section 3, we present the basic location sensing 
technologies and the respective devices. In Section 4, we present the layered architecture of the system 
and discuss the structure of each layer. In Section 5, we define the experimental setup environment and 
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provide the results from the evaluation of the system. Section 6 discusses open research issues and 
Section 7 concludes the paper. 

II. RELATED WORK 

Indoor positioning systems have been an active research area since the Active Badge [1] project. Since 
then, several indoor location systems have been proposed. A large number of them use IEEE 802.11 (Wi-
Fi) access points to estimate location. RADAR [2] is a radio-frequency (RF) based system for locating 
users inside buildings. It operates by recording and processing received signal strength (RSS) 
information. The RSS method is used also by the commercial system Ekahau [4]. 
The Cricket Location Support System [5] and Active Bat location system [6] use the ultrasonic 
technology. Such systems use an ultrasound time-of-flight measurement technique to determine user’s 
location. The previously mentioned systems provide accurate location information but have also 
drawbacks like poor scaling and a high installation and maintenance cost. For these reasons they are 
rather inaccessible to the majority of users. 
Another category of location systems use multiple sensor readings (Wi-Fi access points, RFIDs) and 
sensor fusion techniques to estimate the location of a user. Location Stack [7] employs such techniques to 
fuse readings from multiple sensors. Another similar approach is described in [8]. The drawback of these 
systems is their inability of supporting mobile devices with limited capabilities (CPU, memory) as the 
location estimation is performed at the client side, hence devices incur the cost of complex computations. 
The location estimation system described in this paper relies on data from sensors to determine the 
location of a user. Our work differs from previous approaches in various aspects. 
Firstly, we use Dynamic Bayesian Networks (DBNs) for location inference. Along with heterogeneous 
sensor data that are processed in real-time we can also “fuse” past information about the user. Secondly, 
our system can support a variety of mobile devices (PDAs, palmtops) with low computing power. 
Location estimation takes place in a server residing in the fixed network infrastructure. Mobile devices 
are just transmitting observations from sensors to this server and receive the location estimations. Finally, 
the adopted system architecture has the advantage of easy management and scalability (e.g. the 
installation of a new access point is completely transparent to users). 
 

III. POSITIONING TECHNOLOGIES  

In this section we present the principal technologies that are used for indoor positioning and describe their 
characteristics. We also discuss a categorization of the devices related with each technology.  
The most important wireless LAN standard today is the IEEE 802.11 (Wi-Fi) that operates in the 2.4 GHz 
band or 5GHz band. Wi-Fi is used by several positioning systems which measure the signal strength from 
access points (RSS) to locate a user.  
Radio Frequency Identification (RFID) is the technology used for security tags in shops, ID cards, etc. 
Tags are powered by the magnetic field generated by a reader and transmit their ID or other information. 
Such tags do not require any battery and can be deployed in a building to detect object and person passing 
or proximity. 
Infrared (IR) Beacons are programmable devices that periodically emit their unique ID in the IR 
spectrum. Usually the range of these beacons is approximately 10-20 meters and the infrared receiver 
should have line of sight with the beacon in order to receive its ID. 
Ultrasonic signals are vibrations at a frequency greater than 20 kHz. The devices used to receive and 
transmit ultrasonic signals are called transducers and are commonly used for distance measuring. In 
general, they integrate a sensor that can receive or transmit an ultrasonic signal and another RF 
transmitter/receiver which is used for synchronization.  



 

All the previously mentioned devices (elements) of different technologies (access points, beacons, tags, 
etc.) can be found in indoor environments either deployed in the building or attached to mobile devices. 
Some of them emit information and others detect (read) information. According to their position and 
functionality the elements can be categorized as follows:  

• Portable elements are those carried by users or attached to their mobile devices (RFID tags, Wi-Fi 
adapters) 

• Infrastructure elements are those attached to the building (Wi-Fi access points, IR beacons, RFID tag 
readers)  

• Active elements (sensors) are those which detect a phenomenon or take measurements (RFID tag 
readers, Wi-Fi adapters) 

• Passive elements are those that emit information which is detected by active elements. Wi-Fi access 
points, IR beacons, etc., fall in this category. 

 

IV. SYSTEM ARCHITECTURE 

The architecture of the proposed location estimation system is organized in three layers: the sensing layer, 
the collection layer and the fusion layer. Figure 1 illustrates the generic architecture of the proposed 
system. We also present location aware applications and databases where the personal profile of users or 
historical data about their behavior is stored. The layered approach aims to facilitate effortless inclusion 
of new elements in order to improve the accuracy and the availability offered by the system. In the 
following paragraphs we provide a more detailed presentation of each layer. 
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Figure 1. Architecture of the indoor location estimation system 

A. Sensing layer 
This is the lowest layer of the architecture and comprises sensors of different technologies. Sensors are 
attached either to the user’s mobile device (portable active elements) or are attached to the building 
(infrastructure active elements). Below, we briefly discuss these two categories.  



 

1) Portable Sensors 
A Wi-Fi adapter, can measure the received signal strength (RSS) from a Wi-Fi access point. Similarly, the 
IR port of a handheld device or a laptop is used as reader for infrared transmissions from IR beacons that 
are wall-mounted.  

2) Infrastructure Sensors  
RFID tag readers belong in this category. Such readers detect an RFID tag and read its ID when the latter 
is in proximity. Users can carry RFID tags which have unique IDs. Furthermore, ultrasonic devices, 
which estimate the distance of a user from a known point, also belong in this category. 

B. Collection Layer 
This layer consists of software components called collectors. The role of a collector is to interact with the 
appropriate sensor and collect measurements or events. Sensors may produce raw data in a variety of 
formats according to their type. Hence, the output of a Wi-Fi adapter is a stream consisting of RSS 
measurements from access points; IR and RFID tag readers generate a stream of proximity events. When 
such raw data arrive at the collection layer, a preprocessing procedure is performed as described below.  

1) Preprocessing of raw data  
Assume that a new RSS measurement arrives from a Wi-Fi adapter. Then, the appropriate collector (Wi-
Fi collector) quantizes this on N discrete levels (values): S1, S2…SN. If, for example, the value from the 
access point with ID AP2 is between -70 dBm and -60 dBm the value “S1” is assigned to this 
infrastructure passive element.  
An IR Beacon collector, during this preprocessing procedure operates differently. The two possible states 
of an IR Beacon are: Visible and Not_Visible. Assume that an IR receiver is in the range of the IR Beacon 
with ID IRB3. This situation will cause a proximity event which will be detected and the collector will 
assign the value “Visible” to the IRB3. The functionality of an RFID tag reader collector is similar to the 
IR Beacon collector. 

2) Tuple formation 
After the preprocessing of raw data from the sensing layer, each collector forms a tuple of the type: 
  

(user_ID, IE_ID, value) 
 
where user_ID is the unique identifier of a user,  IE_ID is the unique identifier of an infrastructure 
element and value is a measurement or an event. 
A Wi-Fi collector may form the following tuple:  
 

(userA, AP1, S1) 
 
which denotes that the Wi-Fi adapter (portable active element) of the mobile device of userA measures 
the RSS from access point AP1 (infrastructure passive element) and the (quantized) RSS has value S1. 
A possible tuple generated by a RFID tag reader collector would be:  
 

(userB, RFR1, Visible) 
 
which denotes that an RFID tag (portable passive element) worn by userB (or attached to his/her mobile 
device) is in proximity of RFID tag reader with ID RFR1. 
In the next section (Fusion layer), we will show how such values are exploited for location estimations. 



 

C. Fusion layer 
As mentioned in the Introduction, the fusion engine is based on a Dynamic Bayesian Network (DBN) 
which is used for location inference. Below, we briefly discuss the basic concepts of Bayesian and 
Dynamic Bayesian Networks and, next, we discuss the adoption of DBNs in the proposed system. We 
assume that the reader is familiar with the theory of Bayesian and Dynamic Bayesian Networks. For a 
more complete introduction the author is referred to [9], [10]. 

1) Bayesian and Dynamic Bayesian Networks  
Bayesian Networks (BNs) present a statistical tool that has become popular in the areas of machine 
learning. They are well suited for inference because of their ability to model causal influence (cause - 
effect) between random variables.  
A BN consists of two parts. The first part is a directed acyclic graph (DAG), representing random 
variables as nodes, and relationships between variables as arcs between the nodes. If there is an arc from a 
node A to a node B then it is considered that B is directly affected by A (A is the parent of B). Each node is 
conditionally independent from any other node given its parents.  
The second part of a BN is a probability distribution associated with each graph node. This describes the 
probability of all possible outcomes of the variable given all possible values of its parents. The parameters 
of this probability distribution would be estimated using observed data (Bayesian Network learning) [11]. 
The DAG and probability distributions together define the joint probability distribution. 
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Figure 2. A Dynamic Bayesian Network (DBN) showing dependencies between variables in different 

time-slots (A at t-1 affects A and B at t) 
 
A DBN extends the static BN by modeling changes of stochastic variables over time. Random variables 
in a DBN are also affected by variables from previous time slots (see Figure 2). For simplicity, it is 
assumed that the parents of a node are in the same or in the previous time slot (First Order Markov 
Chain).  

2) DBN integration in the location system 
The DBN that is used in our location estimation system is depicted in Figure 3.  
 

L

IENIE2IE1

L

t-1 t

... IENIE2IE1 ...  
 

Figure 3. DBN for location estimation representing the dependencies between random variables at 
different time slots 

 
The incorporated random variables are: 



 

• the location L of the user, which may take values from a set of K locations {L1, L2,…LK}. 
• the N infrastructure elements IE1, IE2,…IEN. The range of values of those random variables depends 

on the type of element. Hence, an access point may take a value from the set {S1, S2,…} and an 
RFID tag reader from the set {Not_Visible, Visible}. 

The random variable L at time t, )(tL , is directly affected by the random variable L at time t-1, )1( −tL , so 
)1( −tL is the cause and )(tL  is the effect. This is a reasonable assumption as the location of a user is 

depended on his/her previous location. Also, the infrastructure elements at time t are affected by location 
at time t, )(tL ; the location of the user affects the value of an infrastructure element (e.g., the signal 
strength measured from a Wi-Fi access point depends on the location of the user).  
The probability distributions that are associated with each node of the DBN are estimated with Bayesian 
Network learning techniques. In particular, for every infrastructure element (IE1, IE2,…IEN) we estimate 
the probability distribution )|( LIEP i . This can be achieved by taking into account the fixed positions of 
infrastructure elements, the indoor propagation models of RF and IR signals, the time of flight of 
ultrasonic signals, etc. A simpler technique of learning that can be used is the method of sampling (signal, 
events) at every location for determining the values of infrastructure elements and the frequency of 
appearance of these values. According to this frequency we are able to form the probability distributions. 
In Table 1 we present a probability distribution of a passive infrastructure element (Wi-Fi access point) 
with ID AP1.  
 
Table 1. A possible probability distribution for access point with identifier AP1. It can be shown that the 

probability P(AP1=S2 | L=L1 ) = 0.3 
 L1  L2 … 
S1 0.5 0.0 … 
S2 0.3 0.8 … 
… … … … 

 
Furthermore, the probability distributions )|( 1−tt LLP  for location transition can be generated according 
to the structure of the building, the distance between two locations and the time required by a mobile user 
to cover this distance. The determination of probability distributions takes place once, at system 
initialization (training phase). 

3) Location inference queries 
After having structured the DBN of the fusion engine we can use it for location estimations. A location 
inference query might be: “Where is user X given his/her previous location and given the values 
(observations) of infrastructure elements associated with this user?”.  
To answer this we calculate for each of the K locations {L1, L2,…LK } the following conditional 
probability: 

))(,)(|)(( tO1tLtLP − . (1) 

which is the mathematical representation of the location inference query and denotes the probability of 
being at location )(tL  at time t (the requested location) given the already known value of the previous 
location )( 1tL −  and given the values of the N infrastructure elements at time t, )(tO . For simplicity 
reasons we write 

)(})(,...)(,)({ tOt
NIEt

2IEt
1IE = . (2) 

Equation (1) can be converted to the following equation:  
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Taking into consideration that each node of our DBN is conditionally independent from any other node 
given its parents, we can compute the joint probability that appears in the numerator of (3). Also, as the 
denominator of (3) does not depend on the random variable )(tL , it can be treated as a normalizing 
constant. Hence, the following equation is derived: 
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The probability distributions ))(|)(( tLtOP  and ))(|)(( 1tLtLP − are known from the training phase, so we 
can now compute the probabilities for each location {L1, L2,…LK}. The problem of location estimation is 
to find the location iL , that maximizes the probability.  

)})(,)(|)((max{ tO1tLt
iLP − . (5)

The location with maximum probability is stored in the database and the profile of the user is updated. 
Moreover, the location information is forwarded to LBS applications. 
 

V. SYSTEM EVALUATION 

A. Experimental setup 
The evaluation of our system was performed using two technologies, Wi-Fi access points and IR 
Beacons. The experimental setup was the 2-floor building of the Department of Informatics and 
Telecommunications (University Of Athens). Each floor has dimensions of 30 X 100 meters. A user 
equipped with a mobile device was roaming inside the building at walking speed (∼4 km/h). 
In total, we used 4 Wi-Fi access points (exploiting the wireless infrastructure of the building) and 5 
Lesswire IR Beacons. Moreover, we used 35 symbolic locations (room1, room2,…). During the DBN 
training phase, a training sequence (number of samples-measurements) from all locations and 
infrastructure elements was compiled and fed to the system. This resulted to the formation of probability 
distributions. The length of the training sequence was 60 samples for each location 
The overall architecture of the system (collectors, fusion engine) was implemented in Java programming 
language. The server, where the fusion procedure and location inference is performed, was executed on 
an Athlon 1800+. At the client (user) side, we used an iPAQTM Pocket PC equipped with an OrinocoTM 

wireless adapter and a “built-in” IR port.  

B. Experimental results 
In Figure 4 is illustrated the availability of the system at a specified accuracy level (error <10 meters) if 
we use only IR Beacons, only Wi-Fi access points and their combination1. The availability for the first 
case is 31%. If we only use Wi-Fi access points availability climbs to 48%. Finally, the location 
estimation system that uses the combination (fusion) of the two heterogeneous technologies reaches 
availability 65%. As anticipated, the integration of heterogeneous technologies into the system improves 
its performance. 

                                                 
1 The accuracy determination of the location estimation results was achieved by comparing the estimations with known reference points in 

the building. 
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Figure 4. Availability of different technologies for a specific accuracy level (error less than 10 meters) 

 
As discussed in the description of the Fusion layer, the system computes the probabilities for each 
location and the estimated location of the user is the location with the maximum probability. We define 
this maximum probability as confidence probability of the system.  
Figure 5 illustrates the confidence probability (mean value) of the system using a static Bayesian 
Network and a Dynamic Bayesian Network for the location inference process. In the first case we do not 
take into consideration the previous location of the user for the estimation of the current location. The 
mean value of confidence probability was 75%. Conversely, through the use of a DBN, the mean value of 
confidence probability increased to 89%. It is obvious that the use of DBNs for location inference instead 
of static BNs increases the certainty on the user position estimation, thus improving the performance 
indicators of the location system. 
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Figure 5. Mean confidence probability of the system, using static BN and DBN 

VI. FUTURE WORK 

Currently we are working on two issues which will have a direct impact on system’s performance and 
scalability. The first issue is the use of “dead reckoning” techniques to improve the availability and 
accuracy that the system provides. A user’s mobile device which is equipped with an electronic compass 
and an accelerometer could provide information about the direction and speed of its owner. Taking also 
into account the last known position of the user and the time elapsed since then, we can predict the 
current position and make more accurate estimations.  
The second issue that we are working on is the adoption of a distributed architecture for the system. In 
this distributed architecture the building is divided in regions (cells). For each region there is one server 
responsible for location estimations. Servers of adjacent regions are interconnected in order to 
interchange information about the users (handovers between regions, etc). The distributed approach of the 
system will enhance its performance, improve its scalability and make it more robust in case of server 
failures. 



 

VII. CONCLUSION  

In this paper we presented a layered fusion system architecture which exploits information from sensors 
of different technologies to estimate the location of a user. A key difference from similar systems is the 
use of Dynamic Bayesian Networks for location inference. The use of DBNs improves our estimations. 
Along with sensor information we take into consideration the previous location of the user thus improving 
the performance. Additionally, the system supports a variety of mobile devices including those with 
restricted computational capabilities (PDAs, etc.) as they do not incur the burden of complex location 
calculations. Finally, the evaluation of the system in real conditions proved its appropriateness for indoor 
positioning. 

REFERENCES 

[1] Want, R., Hopper, A., Falcao, V., Gibbons,J.:The Active Badge Location System.ACM Transac. on Information 
Systems,10,91-102. (1992) 

[2] Bahl, P., Padmanabhan, V.: RADAR: An In-Building RF-Based User Location and Tracking System. Proceedings of IEEE 
INFOCOM, pp. 775-784 (Tel-Aviv, Israel).(2000) 

[3] Sonnenblick, Y.: An indoor navigation system for blind individuals. In CSUN Center On Disabilities, editor, CSUN 1998 
Conference, California State University Northridge, Los Angeles, March 1998. 

[4] Ekahau, Inc : Ekahau Positioning Engine. http://www.ekahau.com/  
[5] Nissanka, B. Priyantha, A., Balakrishnan, H.: The cricket location-support system. In Proceedings of MOBICOM 2000, 

pages32-43, Boston, MA, August 2000. ACM Press. 
[6] Harter, A., Hopper, A., Steggles, P., Ward A., Webster P.: The anatomy of a context-aware application. In Proc. of the 5th 

Annual ACM/IEEE Inter. Conf. on Mobile Computing and Networking (Mobicom ’99), 1999 
[7] Graumann, D., Lara, W., Hightower, J., Borriello, G.: Real-world implementation of the Location Stack: The Universal 

Location Framework. In Proc. of the 5th IEEE Workshop on Mobile Computing Systems & Applications (WMCSA 2003), 
pp. 122-128, Oct. 2003 

[8] King, T., Kopf, S., Effelsberg, W.: A Location System based on Sensor Fusion: Research Areas and Software Architecture. 
Proc. of 2nd GI/ITG KuVS Fachgespräch "Ortsbezogene Anwendungen und Dienste", Stuttgart, Germany, June 2005 

[9] Jensen F.: An Introduction to Bayesian Networks. SpringerVerlag, New York, 1996. 
[10] Mihajlovic, V., Petkovic, M.: Dynamic Bayesian Networks: A State of the Art. Technical report (2001), Centre for 

Telematics and Information Technology, University of Twente, Enschede, The Netherlands.  
[11]Heckerman, D.: A tutorial on learning with Bayesian networks. Technical Report MSR-TR-95-06, Microsoft Research, 

1995 
 
 


