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Abstract 

 
In this paper, we focus on proactive radio resource 

management schemes that retain the quality of the in-
dividual connections by pre-reserving the needed re-
sources in a cellular network. We propose a new 
scheme, which improves older proactive solutions. 
Typically, in such solutions an improvement in call 
dropping probability negatively impacts new call 
blocking probability. We improve this framework by 
careful, fine-grained time scheduling of the proactive 
resource management. We adopt optimal stopping 
theory for our solution. Our findings are quite promis-
ing for the broader framework of proactive resource 
management and mobile computing. 
 
1. Introduction 
 

In this paper we introduce a new proactive radio re-
source management scheme. The main objective of the 
proposed scheme is to reduce the dropping or forced 
termination probability in wireless cellular systems 
attributed to handovers. This objective is achieved 
through the pre-reservation of the required resources 
(e.g., bandwidth) in the most likely to be visited cell of 
the current neighborhood. Hence, after the occurrence 
of the handover, the mobile terminal (MT) does not 
compete for finite network resources but enjoys a pre-
arranged configuration and the user does not expe-
rience service discontinuation or low service quality. 
The user (MT) pays a price to the network for this 
proactive service, so that it compensates for the occu-
pied resources that cannot be offered to another ter-
minal for the pre-reservation time interval. The pro-
posed scheme consists of a path prediction algorithm 
and the determination of the optimal time instance for 
the pre-reservation of the required bandwidth. Finally a 
call admission control scheme is used, if no pre-
reservation takes place. 

The rest of the paper is organized as follows. In sec-
tion 2, we describe related prior work in proactive re-

source management. In Section 3, we discuss optimal 
stopping theory and, specifically, the parking problem. 
Section 4 presents our proposed scheme, while Section 
5 provides simulation results. Section 6 concludes the 
paper. 
 
2. Prior work in proactive resource man-
agement 
 

In this section, prior work on predicting the move-
ment of a user and pro-actively performing resource 
management is presented. A general survey of the 
above topics can be found in [1].  

Many authors have proposed schemes that are 
based on guard channels. According to these schemes 
a portion of the bandwidth is intended for handed-over 
sessions. In [6], a simple scheme assuming a fixed 
amount of guard bandwidth is introduced whereas in 
[4], a simple call admission control (CAC) algorithm 
which takes advantage of guard channels is used. In 
[5] other adaptive reservation schemes based on guard 
resources are discussed. A new proactive QoS provi-
sioning technique is introduced in [3]. This technique 
involves requesting network resources ahead of time as 
the mobile host moves from one cell to another.  

In [2], the authors use the shadow cluster concept, 
which can be used to estimate future resource require-
ments and perform call admission decisions in wireless 
networks. The framework of a shadow cluster system 
can be viewed as a message system where MTs inform 
the base stations (BSs) in their neighborhood about 
their requirements. With this information, BSs predict 
future demands and can reserve resources accordingly. 

Finally in [7], a scheme for the proactive allocation 
of network resources to mobile users, based on a pric-
ing framework is proposed. The future BS, where re-
sources have to be a-priori secured, is determined by a 
path prediction algorithm. The network receives a fee 
for providing the advance reservation service to the 
user while the exact price is determined after a sequen-
tial bargaining procedure, modeled as a two person 



 
 

non-cooperative game between the mobile user and the 
network.   

It is obvious that, even though the proactive re-
source management has attracted significant research 
efforts, this problem has not been studied yet to further 
improve the efficiency of the various solutions. 

 
3. Optimal stopping theory – Parking 
problem 
 

Optimal stopping theory is concerned with the 
problem of choosing the best time instance to take a 
decision to perform a given action based on sequential-
ly observed random variables in order to maximize the 
expected payoff or minimize the expected cost. There 
are many problems whose solutions may be effectively 
evaluated by this method, as we can see in [9]. The 
most famous of these are the secretary problem and the 
parking problem. The scheme introduced in this paper 
is based on the parking problem.  

In the original parking problem, a person (the deci-
sion-maker) drives a car along a straight highway to-
wards his destination and is looking for a parking 
place. When he finds a parking place, he can either 
park or continue driving. Parking places are assumed 
to occur along the highway at random and they consti-
tute a Bernoulli distribution. If the decision maker has 
not parked by the time he reaches his destination then 
he continues driving until he finds the first parking 
place thereafter and parks there. Once he parks some-
where, the decision-maker must walk to his destina-
tion, which corresponds to the cost (loss) he has to 
pay. 

The extension of the original problem, in which we 
base our proposed scheme, was presented in [10]. Ac-
cording to this modified problem, parking places do 
not follow a Bernoulli distribution, but they are as-
sumed to occur along the highway according to a Pois-
son process. In contrast with the original problem 
where the decision-maker is assumed to know the ex-
act location of his destination, it is supposed that the 
distance between the starting point and the destination 
is not known in advance but is a positive random vari-
able with given probability distribution. Considering 
this we can find a policy, which minimizes the ex-
pected cost that is the distance to his destination. 

 
4. Model for proactive resource manage-
ment  
 

In this section we discuss in more detail the pro-
posed proactive resource management scheme.   

When a MT enters a new cell, the path prediction 
algorithm (PPA) is invoked and its output vector indi-
cates the most likely cell for the next handover. We 
assume the use of the PPA reported in [8]. After the 
next cell is determined, MT makes a request for band-
width pre-reservation to this cell. Henceforth, the ini-
tial problem boils down to an optimal stopping prob-
lem. Therefore, we should determine the optimal time 
instance to commit a request for resource pre-
reservation, in order to minimize the cost incurred by 
the MT.     

This problem can be modeled as a modified parking 
problem, based on Tamaki’s work [10]. At first, we 
assume that the critical variable in our model is time 
(time to handover) and not space (distance to a given 
destination). The MT is considered to be the “car driv-
er” (i.e., the decision-maker) moving toward the desti-
nation. In our scheme, the destination is considered to 
be the handover time instant. The objective of the MT 
is to “park” before it reaches the destination, that is to 
pre-reserve the required bandwidth before the handov-
er (after the handover, the MT contents - equally - with 
other MTs). We consider that the MT pays a price to 
the BS of the corresponding cell in proportion to the 
time interval of the pre-reservation. Consequently the 
cost incurred by the MT decreases for shorter prereser-
vation periods and is given by:    

      (1)requiredL p BW t= ⋅ ⋅Δ  
where Δt = tHO-t (time interval until handover), tHO: 
time of handover, p: price per bandwidth unit per time 
unit (m.u.1/(Kb/s)) that the ΜΤ pays and BWrequired: the 
required bandwidth.  
 

 
Figure 1.  Representation of the proposed model 

 
After the occurrence of the handover, the term pre-

reservation has no meaning. For this reason, we con-
sider that the MT cannot “park” after the handover 
time instant, and we assume that the respective cost is 
very high.  

Regarding the empty parking places, they represent 
the time instances when the available bandwidth of BS 
exceeds the required bandwidth, that is to say: 

 

                                                           
1 m.u. is monetary units. 
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From t=0 and afterwards, MT queries the BS every τ 
time intervals, trying to determine the availability of 
“free parking places” (free bandwidth) (see Figure 1). 
If the MT finds available bandwidth, it can either 
“park” (request for pre-reservation) or continue, consi-
dering that it can find another “parking place” with 
smaller cost. The time instant of the handover is not 
known in advance and is treated as a random variable 
tHO that follows a Gamma distribution with probability 
distribution function F(tHO). This can be justified if we 
take into account that the cell residence time of MT 
can be approximated well by a Gamma distribution 
[11]. Furthermore, we assume that as the MT moves, 
the “free parking places” are Poisson distributed with 
parameter λ. This is a reasonable assumption if we take 
into account the fact that “free parking places” are the 
cumulative effect of connections handed-over, initiated 
and terminated in the considered cell. 

The time instances when the BS has available 
bandwidth constitute a {Τk} Markov chain, whose val-
ues can be {Τk=t} if the handover has not yet occurred 
and the MT finds the kth “parking place” at t, and 
{Τk=[t,tHO]} if the handover has occurred at tHO and the 
MT finds the kth “parking place” at t (t>tHO). Based on 
Tamaki’s work [10], it can be easily seen that the ex-
pected cost if the pre-reservation occurs in time t is 
given from the following equations: 
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In case that the MT does not make a request and a 
handover occurs, the cost is very high:   

1( , ) ( )    (3)HO required HOV t t k p BW t t= ⋅ ⋅ ⋅ − , 
where k is a large value. 

Let V(t) be the expected loss under an optimal poli-
cy given that the decision-maker is at t. Then, by the 
principle of optimality, we compare the return for 
stopping, namely V1(t), with the return we expect to be 
able to obtain by continuing and using the optimal rule 
for the next stages through the destination, which is 
PV1(t). Thus, we obtain the functional equation: 

1 1( ) min{ ( ), ( )}     (4)V t V t PV t=  
Where the operator P is introduced to represent 
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where 
1{ | } Pr{ | }HO k HO kp t t T t T t+= = =  

Let 
1 1{ | ( ) ( )}   (6)G t V t PV t= ≤  

be the set of states derived from the application of the 
one-stage look ahead (OLA) policy. G can be inter-
preted as the set of states for which the immediate stop 
is at least as good as continuing exactly for one more 
transition and then stop. If we define the OLA policy 
as one, which indicates to stop as soon as the state en-
ters G, then it can be proven that the OLA policy is 
optimal [10]. 
Straightforward calculations derive: 
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 So if we let 
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then  
{ | ( ) 1/(2( 1))}    (9)G t g t k= ≥ +  

The function g(t) is the conditional probability that no 
“parking place” (free bandwidth)  has been located by 
the time the handover occurs, given that the MT is at 
state t. g(t) must be non-decreasing in t, so that G is an 
optimal stopping region. If g(t) is non-decreasing in t 
then G can be written as *{ | }G t t t= ≥ where t* may 
be infinity.  

 As it has been mentioned before, the time until the 
next handover is considered to be Gamma distributed 
with distribution function as follows: 
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g(t) can be proven to be non-decreasing by the fact that 
if we let 

0
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=
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=
= ∑ then 

( ) / ( )u t tυ  is non-decreasing in the interval (0, ∞ )  so 
far as αj, b j≥ 0  and αj/b j is non-decreasing in j. Since 
g(0)=(μ/(λ+μ))n

  and g(∞ )=(μ/(λ+μ)), t* is the unique 
positive root of the equation g(t)=1/(2(k+1)) if    
(μ/(λ+μ))n ≤1/(2(k+1))≤ (μ/(λ+μ)), otherwise t*=0 or 
∞  according as 1/(2(k+1))≤(μ/(λ+μ))n or  
(μ/(λ+μ))≤1/(2(k+1)). 

Consequently with the entrance of MT in G state, it 
has to stop and request for pre-reservation. This will be 
the optimal policy.  

It is mentioned that if MT has not “parked” (has not 
request for pre-reservation) and the handover occurs, 
then the conventional call admission control has to 
decide if BS will accept the call or not. 
 
5. Simulations and results 
 

The proposed scheme has been simulated using 
Matlab. Specifically, we compared our model with a 
non-proactive scheme, and a simple proactive scheme 
in which the users can pre-reserve resources right after 
their entrance in the previous cell. 
 
5.1 Simulation model 
 

We consider a multi-cell system with 7 BSs (see 
Figure 2) while the capacity of each BS is 2000 band-
width units. Cells are considered neighbors if they 
share one common side. 

 

 
Figure 2. Plan of the simulation area 

 
We assume that a MT can successfully predict the next 
cell. Modern PPAs yield a success probability close to 
0.95. The handling of the PPA failures is an open issue 
left for future work. 

Furthermore, we assume a simple traffic model with 
four types of applications. Their specific characteristics 
are shown in Table 1. We consider that each user can 
execute only one application each time. Application 
types are randomly invoked. The duration of applica-
tion sessions is exponentially distributed with mean 

value as indicated in Table 1 while the arrivals of new 
sessions are Poisson distributed. Moreover, the cell 
residence time of each user is modeled as a random 
variable that follows the Gamma distribution as in 
[11]. 

 
Table 1. Characteristics of Application Types 

Application 
Requested  
Bandwidth  

(kb/s) 

Mean session 
duration 

(s) 

Arrival rate  
(sessions/h) 

Voice 64 120 4 
FTP 128 300 2 

HTTP 64 6 40 
Video 512 320 1 

 
5.2 Simulation results 
 

In this section, we initially compare the probability 
of blocking a new application (Pblock) and the probabili-
ty of dropping an existing one (Pdrop) in our scheme 
with the same probability measures in a non-proactive 
scheme. Specifically, Pblock is the ratio of blocked ap-
plication sessions against the total count of application 
sessions and Pdrop is the ratio of dropped sessions (due 
to handovers) against the total count of sessions. Our 
simulation involves 700 users that are initially un-
iformly distributed in the considered area.  

In Figure 3, we notice that our scheme has suc-
ceeded to reduce significantly the dropping probability 
for all types of applications.  
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Figure 3. Dropping probability 
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Figure 4. Blocking probability 



 
 

    
On the contrary, as we can see in Figure 4, the 

blocking probability is higher in our scheme. In the 
proposed scheme a portion of the network bandwidth 
is reserved for handed-over sessions, resulting in less 
available bandwidth for the new sessions and, thus, in 
higher blocking probability. 

Comparing the proposed model with the simple 
proactive model, we observe that the proposed model 
has lower blocking and dropping probabilities inde-
pendently of the number of users, as we can see in 
Figures 5 and 6. This is reasonable since the proposed 
model performs a careful time management of the 
proactive scheme. Users cannot preserve resources 
right after their entrance in the previous cell as they are 
charged for the service. They need to rationalize their 
proactive requirements. The network, on the other side, 
can exploit the unreserved resources in order to ac-
commodate other sessions with very specific, imme-
diate requirements. As an example of the rationaliza-
tion of the proactive resource management we mention 
that 25% of the active connections terminated in the 
current cell despite the fact that they proactively re-
served resources in the future cell.  
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Figure 5. Blocking Probability - Comparison between the 

proposed model and a simple proactive model 
 

An optimal stopping scheme reduces this unwanted 
resource consumption, increases the efficiency of the 
network as it may accommodate other users and reduc-
es the monetary cost incurred by users. That means 
that our model leads to a more rational resource man-
agement as it reduces the time interval of the pre-
reservation. Contrary to this scheduling framework, the 
simple proactive method does not exploit properly the 
available resources, resulting in high blocking and 
dropping probabilities.  

Subsequently, we study the effect of our scheme in 
the revenues of the network and the cost per user. In 
our model, it has been considered that the users who 

want to pre-reserve bandwidth in a cell should pay a 
higher price than those who are already in the cell. 
Specifically, we consider that the prices for a user are 
pcell = 10-4 m.u. (per bandwidth unit per time unit) and 
pproactive=1.5 10-4 m.u. (per bandwidth unit per time 
unit). Consequently, another factor that is important 
for further study is the network income.  
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Figure 6. Dropping Probability - Comparison between the 

proposed model and a simple proactive model  
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Figure 7. Network Revenue - Comparison between the 

proposed model and a simple proactive model  
        

Initially, we compare the results regarding cell rev-
enue in the proposed model and those of a simple 
proactive model. As it appears from Figure 7, below a 
certain number of users, the total network income is 
the same for the two models. However, for more users, 
the proposed model leads to higher income. In particu-
lar, the income from users that are already in the cell is 
higher in the proposed model. This can be explained if 
we take into account that our model leads to a smaller 
blocking probability than the simple model. On the 
contrary, the income due to pre-reservation is higher in 
the simple proactive model as the MTs reserve the re-
quired bandwidth for more time than in the proposed 
model. This, however, leads to higher cost per user in 



 
 

the simple model, which is, surely, not desirable (Fig-
ure 8).  
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Figure 8. Comparison between the proposed model and a 

simple proactive model in terms of cost per user 
        

Finally, we compare the proposed model with a 
non-proactive model in terms of network income. As it 
can be seen from Figure 9, network income is higher in 
the proposed model. That means that the revenue that 
the network earns because of the pre-reservation is 
higher than its loss because of the increased blocking 
probability. 
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Figure 9. Network Revenue - Comparison between the 

proposed model and a non-proactive model  
 
6. Conclusion 
 

This paper presents a new proactive resource man-
agement scheme for the pre-reservation of network 
resources. The objective of our model is to reduce the 
handover dropping probability in wireless cellular sys-
tems and guarantee an acceptable QoS. The proposed 
scheme adopts optimal stopping theory and, specifical-
ly, the parking problem to determine the optimal time 
of committing the request for resource pre-reservation, 
in order to minimize the cost incurred by the MT. This 
delayed preservation yields the extra benefit of allow-
ing the network to optimally exploit the resources, 

which would otherwise be committed to a possibly 
unneeded pre-reservation.  

Different simulation experiments of the proposed 
scheme are also presented. The results show that the 
proposed scheme succeeds to reduce the dropping 
probability while at the same time increases the total 
revenues of the network. In the future, we plan to ad-
just other problems of optimal stopping to solve radio 
resource management issues. 
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