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ABSTRACT 
Acquisition of pervasive sensor data can be often unsuccessful 
due to power outage at nodes, time synchronization issues, 
interference, network transmission failures or sensor hardware 
issues. Such failures can lead to inadequate data delivery to the 
monitoring applications resulting in erroneous conclusions. This 
paper presents a missing values substitution framework that 
addresses the aforementioned issue. The presented framework has 
been evaluated within a pervasive sensor monitoring environment 
that collects and transmits patient health related data and results 
are presented.  

Categories and Subject Descriptors 
H.4.3 [Communications Applications], J3.3 [Medical information 
systems] 

General Terms 
Algorithms, Measurement, Performance, Reliability, 
Experimentation. 

Keywords 
Pervasive Sensors, Healthcare Data Transmission, Missing Values 
Substitution. 

1. INTRODUCTION 
Pervasive environments offer improved living conditions and 
levels of independence for patients and the elderly population 
who require support with both physical and cognitive functions. 
Within these environments sensing technologies provide a key 
facility to monitor the behavior of the person and their 

interactions. Wireless technologies enable the real time 
transmission of data about a patient’s condition to caregivers. 
Numerous portable devices are available that can detect certain 
medical conditions—pulse rate, blood pressure, breath alcohol 
level, and so on—from a user’s touch. Many such capabilities 
already have been integrated into a handheld wireless device that 
also contains the user’s medical history. It may even be possible 
to detect certain contextual information, such as the user’s level of 
anxiety, based on keystroke patterns.  After analyzing data input, 
the device could transmit an alert message to a healthcare 
provider, the nearest hospital, or an emergency system if 
appropriate. 

In order for such systems to be efficient and effective, the data 
obtained from sensors within the monitoring environment have to 
be totally reliable and robust. However, this cannot be achieved in 
real life monitoring due to a number of reasons, such as time 
synchronization issues, interference, network transmission 
failures in a wireless sensors network. 

Within this context, this paper presents a Fuzzy Identification 
System (FIS) and a Recursive Probabilistic Principal Component 
Analysis (RPPCA), for dealing with missing values derived from 
data streams of wireless bio-sensor networks. The rest of the 
paper is structured as follows: Section 2 discusses related work in 
the domain of missing values substitution for sensor networks. 
Section 3 presents an overview of pervasive sensor data 
acquisition methods and techniques in healthcare. Section 4 
describes the proposed methods and Section 5 presents evaluation 
results using an on-body pervasive sensor platform. Finally, 
Section 6 concludes the paper and report future trends. 

2. RELATED WORK 
The problem of missing values appears in applications of many 
areas. This problem is one of the failures that emerge more 
frequently in wireless sensor networks. Many approaches have been 
proposed for the substitution of missing values. The most popular 
approach is the use of the mean substitution. We can use many other 
simple or complex univariate statistical methods like the mean 
substitution or autoregressive moving average (ARMA) ([16]). We 
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can also use multivariate statistical methods like principal 
component analysis (PCA) or partial least squares (PLS) regression 
for correlated data ([16]).  
Today’s sensor networks can deploy easily, are low-budget and 
produce redundancy of correlated data. We can exploit the last 
attribute to estimate missing values using multivariate techniques. 
Wasito et al. ([18]) discussed and compared different approaches for 
missing values imputation. Dunia et al. ([19]) countered missing 
values like other faults found in process data, e.g. outliers or 
complete failures using PCA. PCA can reduce the dimensions of a 
sample by converting the parameters of measurement to a new 
system of axes ([17]). The new parameters are linear combination of 
the corresponding initial ones. Nelson et. al. ([20]) proposed three 
methods based on PCA and PLS. Arteaga et al. ([21]) stated a few 
more approaches and proved that some of these are equivalent to 
methods in [20]. The authors of [19], [20] and [21] intended to 
calculate the scores in the presence of missing values and use them 
in monitoring systems. If the scores are calculated, the missing 
values can be easily extracted. 
A solution of missing values problem is to use the maximum 
likelihood estimation (MLE) to provide estimates of missing 
values. We can find MLE of the parameter vector using the 
expectation – maximization (EM) algorithm ([22]) that is a simple 
but computationally complex iterative procedure. 

3. PERVASIVE SENSOR DATA 
ACQUISITION IN HEALTHCARE 
This section presents an overview of techniques and methods for 
acquiring medical data through pervasive sensors. The most 
popular biosignals utilized in pervasive health applications ([1]-
[10]) are summarized in the table below. 

Table 1. Broadly used biosignals with corresponding metric 
ranges, number of sensors required and information rate. 

Biomedical 
Measurements 

Voltage 
range 

(V) 

Number of 
sensors  

Information 
rate 
(b/s) 

ECG 0.5-4 m 5-9 15000 

Heart sound Extremely 
small 2-4 120000 

Heart rate 0.5-4 m 2 600 
EEG 2-200 μ 20 4200 
EMG 0.1-5 m 2+ 600000 

Respiratory rate Small 1 800 
Temperature of 

body 0-100 m 1+ 80 

In addition to the aforementioned biosignals, patient physiological 
data (e,g., body movement information based on accelerometer 
values), and context-aware data (e.g., location, environment and 
age group information) have also been used by pervasive health 
applications ([9], [10]). In the context of pervasive healthcare 
applications, the acquisition of biomedical signals is performed 
through special devices (i.e. sensors) attached on the patients 
body (see Figure 1) or special wearable devices (see Figure 2). 

 
Figure 1. Accelerometer, gyroscope, and electromyogram 

(EMG) sensor for stroke patient monitoring [11]. 

  
        (a)            (b) 

Figure 2. Wearable medical sensor devices: (a) A 3-axis 
accelerometer on a wrist device enabling the acquisition of 

patient movement data [11], (b) A ring sensor for monitoring 
of blood oxygen saturation [12]. 

Regarding communication, there are two main enabling 
technologies according to their topology: on-body (wearable) and 
off-body networks. Recent technological advances have made 
possible a new generation of small, powerful, mobile computing 
devices. A wearable computer must be small and light enough to 
fit inside clothing. Occasionally, it is attached to a belt or other 
accessory, or is worn directly like a watch or glasses. An 
important factor in wearable computing systems is how the 
various independent devices interconnect and share data. An off-
body network connects to other systems that the user does not 
wear or carry and it is based on a Wireless Local Area Network 
(WLAN) infrastructure, while an on-body or Wireless Personal 
Area Network (WPAN) connects the devices themselves; the 
computers, peripherals, sensors, and other subsystems and runs at 
ad hoc mode. WPANs are defined within the IEEE 802.15 
standard. The most relevant protocols for pervasive e-health 
systems are Bluetooth and ZigBee. The latter has been developed 
as a low data rate solution with multi-month to multiyear battery 
life and very low complexity. It is intended to operate in an 
unlicensed international frequency band. The maximum data rates 
for each band are 250, 40, and 20 kbps, respectively.. Finally, 3G 
mobile connectivity offers the freedom to leave the home and 
access high data rate services, even video using readily available 
and low-cost devices. 

Mobility is another major issue for pervasive e-health applications 
because of the nature of users and applications and the easiness of 
the connectivity to other available wireless networks. Both off-
body and personal area networks must not have line-of-sight 
(LoS) requirements. The various communication modalities can 
be used in different ways to construct an actual communication 
network. Figure 3 illustrates a general architecture scheme based 
on the aforementioned, for enabling delivery of patient medical 
data to caregivers and physicians through pervasive sensors. 



 
Figure 3. General architecture scheme of medical data 

acquisition in a pervasive environment. 
During the transmission of medical and other patient-related data 
several failures might occur that can affect the assessment and 
diagnosis: 

• Power failure at nodes: Usually body sensor networks are 
characterized by low power consumption devices. However, 
the sensor nodes continuously operate collecting medical 
data and transmitting them wirelessly to the monitoring 
units. The latter process requires enough power resources 
otherwise transmission can become weak and introduce 
pauses or failures in the delivery of the data streams. 

• Hardware failures at biosignal monitoring interfaces: The 
sensor nodes contain interfaces that are connected to a 
variety of monitoring devices (e.g., ECG or EEG circuits). 
There can be often cases where these interfaces can 
malfunction or pause acquiring data (e.g., due to lead 
accidental removal by the patient), or noise can be interfered 
to data streams (e.g., noise introduced by patient movement). 

• Additional transmission failures can happen due to: 
o Range issues: The most common communication 

protocols for body sensor networks (i.e. Bluetooth 
and ZigBee) have an average range of 10-50 
meters that can be affected by several parameters, 
like intermediate objects, power, etc. It is very 
common when patient moves around in the 
monitoring environment that the sensor nodes can 
get temporarily out of range of the receivers and 
cause missing values in the data streams.   

o Interference issues: Similar data failures can be 
caused due to interferences in the wireless medium 
by several devices that exist in the monitoring 
environments and emit electromagnetic fields (e.g., 
mobile phones, TV screens, etc.).  

o Synchronization issues: Sensor nodes vastly 
acquire and transmit different kinds of patient data 
with different sampling frequencies. The latter can 
cause synchronization issues to the receiving 
applications leading to missing or false interpreted 
data values. 

All the aforementioned situations can result in missing or false 
values in the received data streams. The following sections 
presents the proposed methods for addressing such issues. 

4. MISSING VALUES SUBSTITUTION 
Missing values in a data stream occur when no value is reported 
(e.g., a sensor reading) for one or more specific variables in a 
current observation. Missing values can lead to erroneous 
conclusions about data and, in turn, erroneous inference on the 
whole situation / context of an entity. In addition, missing values 
may prevent proper classification of the situation of an entity, and 
poor substitution schemes for missing values may cause 
classification errors. If all the values substituted are determined 
by the most likely value, then the individual values are less likely 
to help in situational inference. Similarly, substitution of missing 
values may introduce inaccuracies and inconsistencies. Missing 
data values can negatively impact classification results, and errors 
or data skews can proliferate across subsequent runs and cause a 
larger, cumulative error, etc. Moreover, most analysis methods 
cannot be performed if there are missing values in a data stream. 
Generally speaking, we can consider the two policies for 
resolving missing values: 

• Eliminate observations with a high number of missing 
values, since estimating high numbers of missing values 
may introduce bias to further analysis. 

• Replace the observations with missing values adopting 
missing value substitution techniques like, estimating 
missing values by a measure of central tendency, by 
nearest neighbors, by replacing missing values with an 
arbitrary value. 

Both policies can be adopted regarding the application. For 
instance, whether a critical application has to detect and infer the 
situation of an elderly person in a home-care environment then 
each observation derived from a sensors stream is of high 
importance (e.g., ECG). On the other hand, whether an 
application attempts to control a heat system in a medical room 
deriving information from a wireless sensors network (including 
temperature and humidity sensors) then the former policy is 
preferable.  

In this work, we investigate two methods, a Fuzzy Identification 
System (FIS) and a Recursive Probabilistic Principal Component 
Analysis (RPPCA), for dealing with missing values derived from 
data streams of wireless bio-sensor networks. Specifically, we 
target on critical applications, which regularly require sensing 
information in order to detect and infer the situations of elderly 
persons in a home-care environment. Actually, such applications 
are in need of full of contextual information on the current 
situation thus any adopted model for missing value substitution 
has to assume a low computational cost. 

4.1 On the use of Fuzzy Identification System 
Let X = [X1, …, Xn]

T be a n-dimensional context vector of n 
contextual parameters. We plan to estimate the missing value of 
the Xj contextual parameter for some j=1, …, n. If we have a 
series of m observations (measurements) of X written as Xk, k=1, 
…, m and the (m + 1)-th value xj

m+1 of Xj is missing then we 
estimate xj

m+1 based on the m observations [x1
k, …, xn

k], k=1, …, 
m and the m+1 observation [x1

m+1, …, xj-1
m+1, xj+1

m+1, …, xn
m+1]. 

We calculate the sample correlation coefficient matrix rij for each 
pair of contextual parameters (Xi, Xj), that is, 
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where ji xx ,  are the sample means, and σi, σj are the sample 

standard deviations of Xi, and Xj, respectively. The absolute value 
of the sample correlation must be less than or equal to 1. We 
select those Xi that are most correlated with the missing Xj for 
estimating xj

m+1. Hence, if XD is the context vector with those 
contextual parameters that are most correlated with the missing 
parameter w.r.t. r then  

XD = XT diag(d1, …, dn) 

where diag(d1, …, dn) is a diagonal matrix with di = 1 if |rij| > ε 
for some ε > 0;  otherwise di = 0. We call the elements of XD as 
regressors (or explanatory context) that attribute to some linear 
combination on Xj. This means that, the nD ≤ n -1 contextual 
attributes of XD can be used for estimating the missing value of Xj 
after a linear regression of the nD contextual attributes on Xj.   
Moreover, we assign for each observation an exponential 
weighted factor for putting less emphasis on old context vectors 
and importance on the recent observations. Let W be a diagonal 
matrix m x nD with its diagonal elements wk = λm-k for k=1, …, m, 
m, 0 < λ < 1 and its off-diagonal elements equal to zero. Hence, 
the most important observation is the m-th with wm = 1 and for the 
k =1, …, m-1 observations it holds that w1 < … < wm-1. The 
weight of importance over the m observations is (1 – λ)-1, e.g., for 
λ = 0.8, the fifth most recent observations are the most important 
for determining the missing value of Xj.     
We adopt the Weighted Least Squares (WLS) method as a method 
for linear regression of XD on Y = Xj that determines the 
parameter vector θ of unknown quantities in a statistical model by 
minimizing the sum of the squared difference between the yk and 
observation [x1

m+1, …, xj-1
m+1, xj+1

m+1, …, xn
m+1], k = 1, …, m 

values. The estimate of θ that results to a best fit to the set of 
observations, that is, Y  = Φ . θ + E, is then 

θ' = (ΦΤW Φ)‐1 ΦΤW Y 

E is the random errors ek, k=1, …, m that are with zero expected 
value, uncorrelated, have the same variance and are independent 
of XD. The m x nD matrix Φ can be the matrix of the m 
observations, i.e., Φ = [(XD

k)Τ], k=1, …, m. However, Φ can be a 
mapping of the context observations to specific regression vectors 
resulted from the identification of a fuzzy system. Specifically, 
we tune a fuzzy system f with input the XD context vector and 
output the Xj contextual parameter for estimating the missing 
value of xj  at the (m+1)-th observation.  
We consider f as a nonlinear mapping between the nD inputs and 
the y output [25]. The inputs are crisp, i.e., they are real numbers 
(not fuzzy sets). The fuzzification process converts the crisp 
inputs into fuzzy sets, the inference mechanism uses the fuzzy 
rules in the rule-base to produce fuzzy conclusions, and the 
defuzzification process converts these fuzzy conclusions into the 
crisp outputs. We tune f by estimating the best parameters for the 
regression process. We begin by precisely defining the function 
approximation problem, in which we seek to construct a function 
f  to approximate another function g that is inherently represented 
by a finite number of input-output associations, i.e., regressors-
missing parameter associations. We construct a nonlinear 
estimator incorporating fuzzy variables for the contextual 

parameters in XD. Given the real function on the observations g: 
XD

r → Yr, where XD
r ⊂ X1 ×…× XnD, we construct a fuzzy 

system f: XD → Y, XD ⊂ XD
r and Y ⊂ Yr are domain and range of 

interest, by choosing a parameter vector θ, which includes 
membership function centers and widths of the output, so that,  

g(x) = f(x | θ) + e(x) 

for all x = [x1, …, xnD]T ∈ XD where the approximation error e(x) 
is as small as possible. All that is available to choose the 
parameters θ of the fuzzy system f(x | θ) is some part of the 
function g in the form of a finite set of input-output data pairs (xi, 
yi), xi ∈ XD, yi ∈ Y and yi = g(xi). If xi = [x1

i, …, xnD
i ]T represents 

the input vector for the i-th data pair, then the training data set of 
m data pairs is denoted by G(m) = {(x1, y1), …, (xm, ym)} ⊂ XD × 
Y. Hence, the Fuzzy Identification System that is constructed is 
given by 
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where μi(x) is the certainty of the premise of the i-th rule (i.e., the 
i-th data pair) specified by the membership functions on the input 
domain, that is,    
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f uses singleton defuzzification, Gaussian membership functions, 
product for the premise and implication, and center-average 
defuzzification.  
We use the WLS method to tune the fuzzy system f and estimate 
the centers of the output membership functions (the resulted 
parameter vector θ), bi, i =1, …, m, that is the θ = [b1, …, bm] 

parameter. Note that, if ( ) ( )
( )∑ =

= m

j j
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μξ  then f(x | θ) = 

b1ξ1(x) + … bmξm(x). Hence, if we define ξ(x) = [ξ1(x),…,ξm(x)]T, 
then y = f(x | θ) = θTξ(x). Evidently, if the μi are given then ξ(x) is 
given so that it is in exactly the right form for use by the WLS 
method as long as ξ(x) is viewed as a regression vector. The WLS 
algorithm produces an estimate θ’ = (ΦΤW Φ)‐1 ΦΤW Y of the best 
centers for the output membership function centers bi with 

Φ = Φ (m) = [(ξ(x1))T,…, (ξ(xm))T]T 

Hence, the fuzzy sets for the regression process are parameterized 
as linear in the parameters via the mapping of xi to ξ(xi) and tuned 
to achieve perfect estimation of θ minimizing the error E=Y - Φ . 

θ. The estimation of the (m+1)-th value of the missing parameter 
Xj, i.e., y = ym+1, is then derived from y = f(x) in Equation (1) 
putting x = xm+1 = [x1

m+1, …, xnD
 m+1] T.  

It should be noted that, to tune f with may outputs, i.e., more than 
one contextual parameters Xj are missing, then we simply repeat 
the algorithm described below for each output (missing 
parameter) with the following steps:  

1. Let J = {j1,…, jl}, l < n be the set of indices that 
correspond to the missing contextual parameters 
{Xj1,…, Xjl}.  



2. We select the missing contextual parameter Xj* for 
which the values of the contextual parameters of the m 
observations of X assume the biggest sum of rij*, i = 
1,…, n, i ∉ J, that is  
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3. We estimate the missing value of yj*
m+1 of Xj*, i.e., yj*

m+1 

= f(xm+1 | θj*’), where θj*’ is the parameter vector for 
WLS for regression of X on X j*.  

4. We repeat Step 3 for all j ∈ J and in each step we 
expand XD

m+1 with the extrapolated value yj*
m+1.       

4.2 On the use of Recursive Probabilistic PCA 
We can estimate the missing values of X using the statistical 
method of  PCA. Let Z = [Z1, … , Zn] be the standard score of 
vector X, i.e.,  
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for j = 1, …, n, where  bj and σj are respectively the mean and 
standard deviation of parameter Xj. We discard these rows and 
columns from the sample correlation coefficient matrix R = [rij] 
∈ℜnxn of Z which are rik = rki < ε, ∀ i = 1, …, n. The matrix that 
remains is the sample correlation coefficient matrix RC = [rc,ij] 
∈ℜncxnc of parameters which are the most correlated ones, nc ≤ n. 
To simplify the notation, we consider that the correlated 
parameters are the first nc of these. Let ZC = [Z1, … , Znc] be the nc 
- dimensional vector of nc correlated contextual parameters and 
XC = [X1, … , Xnc] the respective of the real observations. PCA is 
an orthogonal linear transformation that transforms the nc 
correlated parameters into nc new linear independent variables 
called principal components (PC). PC are the directions of ℜnc 
that coincide with the eigenvectors wi, i = 1, …, nc of matrix RC. 
The elements wij of eigenvector wi are the coefficients of linear 
combination of parameters that define the direction of ith PC.  

Let λ1, … , λnc be the eigenvalues of matrix RC, where λ1> … 
>λnc. Let ΛC = diag(λ1, … , λnc) and  WC= [w1, …, wnc]∈ℜ

ncxnc, 
where wi is the eigenvector corresponding to eigenvalue λi. 
Hence,  

RC = WC
 . ΛC

 . WC
T
 (3). 

We assume that XC follows a multivariate normal distribution. 
Additionally, we assume that we have already constructed a PCA 
model and that the new (m+1)th vector XC

m+1
 does not affect 

considerably the values of elements of matrix RC. We want to 
estimate the contextual missing values that occur in the XC

m+1
. The 

missing data can be assumed to be the first elements of the 
context vector without loss of generality. We denote the missing 
and the observed parameters with XC

#,m+1
 and XC

*,m+1
 respectively, 

so the vectors  XC
m+1

 and ZC
m+1

 can be partitioned as: 

XC
m+1T

 = [XC
#,m+1T

 XC
*,m+1T

] 

and 

ZC
m+1T

 = [ZC
#,m+1T

 ZC
*,m+1T

]. 

Correspondingly, the WC matrix can be partitioned as 

WC

T
 = [WC

#T
 WC

*T
]. 

We substitute the missing values ZC
#,m+1

 with the expected values 
from the conditional normal distribution given the present ZC

*,m+1
 

vector and the current estimate of correlation matrix: 

ẐC
#,m+1

 = E{ ZC
#,m+1

| ZC
*,m+1

, RC } 

Nelson P. et al. [20] stated that the conditional expectation of the 
missing measurements is given by:  

ẐC
#,m+1

 = WC
#
 . ΛC

 . WC
*T

 . (WC
*. ΛC

 . WC
*T

) . ZC
*,m+1

 (4) 

The above values are those that the expectation – maximization 
(EM) ([22]) algorithm calculate in expectation step. This 
algorithm can also be used when we construct the PCA model to 
handle the missing values. 

From Equation (2) we can calculate the estimate X̂C
#,m+1

 of XC
#,m+1

 
vector. A problem that we must solve in the proposed monitoring 
system is the renewal of model in processes that change over. Our 
model is based on m last XC

k
 vectors of measurements. We renew 

some or all parameters of model, depending on the application. As 
long as we focus on critical applications, an efficient way is to 
compute recursively the new values of model’s parameters when 
a new vector of measurements comes. Tien D. et al. ([23]) 
concluded that when we apply the conventional PCA using a 
static model we reduce the false alarms if we convert the 
measurements in standard score using the mean and standard 
deviation of sample instead of corresponding values that we used 
on model’s construction. We counter the problem of unknown 
mean and standard deviation of the sample by computing them 
from a moving window that contains the m last vectors, which 
represent better the current state of sample. 

The computations of new mean vector bC
m+1

∈ℜncxnc  and standard 
deviation σj

m+1
 after the reception of the (m+1)th measurements 

vector are necessary at any case. We can compute recursively 
these parameters of model from previous - historical - sample’s 
values bC

m
 and σj

m
, respectively, by next recursive equations: 
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The computational cost is constant for every one of  Cn  
parameters and this is important for systems with bounded 
computational power. Especially, medical data through pervasive 
sensors may have parameters that remain constant for long 
intervals of time, like heart’s pulse and data of oxymeter sensor, 
when the patient acts firmly. These parameters have zero sample 
standard deviation. Thus, Equation (2) gives indefinable results 



(NaNs). For this reason, outliers replace missing values. To deal 
this, we can use a univariate method to substitute the missing 
values or we can assume that these parameters are also missing 
and compute the missing value by contribution of remaining 
parameters. However, the former approach biases the parameter 
and the latter gives less accurate values. If we deem that the 
model of process must be updated, we can compute recursively 
the new correlation matrix RC

m+1
 from the previous matrix RC

m
 

using the equation:   

ΣC
m+1. RC

m+1. ΣC
m+1

 = ΣC
m. RC

m. ΣC
m
 + Α (7) 
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where ΣC
m = diag(σ1

 m+1
, …, σnC

m+1
) and ΣC

m = diag(σ1
 m

, …, σnC
m
). 

Furthermore, we compute recursively the eigenpairs {wi, λi} 
using the algorithm proposed by Bunch J.R. et al. ([24]).  

5. PERFORMANCE ASSESSMENT 
To evaluate the substitution systems, we gathered medical data 
that consisted of nine parameters. Six of them are accelerations 
that are produced from two sensor  nodes. ECG, arterial pressure 
and blood oxygen saturation completed the 9-dimensional context 
vector of 9 contextual medical parameters. We describe the 
technical characteristics of nodes of biosensor network that 
produced the measurements in the following paragraphs.  

The Sentilla Perk [13] sensor kit has been utilized in our system. 
The latter contains two 2.4 GHz wireless data transceivers (nodes, 
see fig. 2) using the IEEE 802.15.4 (ZigBee) protocol. It also 
includes a USB port for interface with a personal computer acting 
as the monitoring unit. Each node has a low-power, low-voltage 
MCU (MicroController Unit), one 3D Accelerometer for X, Y 
and Z axis and additional analog and digital input pins for adding 
more sensors. The Perk nodes are provided in a plastic robust 
small-sized enclosure (6x3x1.5cm) making them more suitable for 
placing on patient’s body and tolerating falls. 

 
(a) 

  
(b)   (c) 

Figure 4. On-body sensor devices utilized for patient data 
acquisition: a) The Sentilla Perk node ([13]) containing a 3D 
accelerometer that can be attached on user and send motion 
data through the ZigBee wireless protocol. The plastic 

enclosure can protect the node from falls and makes it more 
suitable for carrying it on patient’s body, b) sentilla node 
connected to ECG board [[14], c) Wireless pulse oxymeter 
[15] 
Two Perk nodes can be placed on patient’s body. Preferable 
positions are close to user’s chest and user’s belt or lower at 
user’s foot. The latter positions have proven based on conducted 
experiments to be appropriate for distinguishing rapid 
acceleration on one of the three axis that is generated during a 
fall. The nodes have two analog input interfaces that can be 
exploited for connecting biosignal sensors like the ECG circuit in  
Figure 4 developed according to [14]. Appropriate J2ME code is 
developed and deployed on the nodes for reading the 
accelerometer values and analog values from the attached sensors 
and transmitting them wirelessly to the monitoring unit. At the 
latter a Java application built using the Sentilla IDE [13] receives 
the patient data and performs further processing as described in 
the following sections. The X, Y and Z acceleration values from 
both sensors are interlaced. The ECG signal can be further 
processed in order to acquire information like salient complexes 
(i.e. QRS complex), and detect specific patterns like arrhythmias, 
etc.  

An additional wireless pulse oxymeter sensor [15] has been used 
to provide more information related to the patient’s physiological 
state. Arterial pressure and blood oxygen saturation level are 
wirelessly transmitted to the monitoring unit from the device. The 
device has an embedded sound alarm mechanism that can notify 
caregivers in case predefined thresholds for arterial pressure and 
oxygen levels are exceeded. 

The above nodes have different sampling rates. We selected 521 
vectors of measurements by rate of 2 samples per second using 
network about 4.5 min. We calculated the correlation matrix of 
sample and we used it to build the model. We put randomly 
missing values in the remaining vectors and reconstructed the 
failures. In Fig.5 we show one acceleration signal and the signals 
of the ECG and of arterial pressure.  

Because of the different nature of parameters, we used the sum of 
squares of reconstruction errors (RE) ej = Ẑj

#,m+1
– Zj

#,m+1
 of 

parameters in standard scores as metric. Using the mean and 
standard deviation of samples, whose sizes were m, 25 ≤ m ≤ 50, 
we calculated the RE. We conclude that metric is reduced when 
the m grows (see Fig. 6.a).  Following, we calculated correlation 
matrices and built PCA models based on different m numbers of 
vectors, 25 ≤ m ≤ 50. We recalculated the estimates of signal 
based on these models keeping the m recent vectors. At all events 
we calculated again the above metric. The reduction of metric 
appeared again when the m grew (see Fig.6.b). Moreover, we saw 
that the model generated by large number of vectors gave better 
estimates (see Fig.6.a). 

We considered the reconstruction of each parameter when this 
parameter is systematically missing. As it is expected, the 
reconstructions are better when the parameters are strongly 
correlated and their standard deviations are important. Thus, 
every parameter has its contribution to sum of squares of RE. 

We created more different erroneous signals samples by the 
random putting of the missing values. The appearance’s rates of 
the missing values of these samples were different. We executed 



the RPPCA algorithm using these samples. Thus, we conclude 
that the sum of squares of RE converges when the rate of missing 
values is large. This occurs because the missing values are 
statistically distributed equally among the parameters (see Fig. 7). 

The quality of the estimates is depended on the type of the 
missing parameter. The RE is less for the most correlated 
parameters. Parameters with a small standard deviation are 
deviating from the multivariate normal distribution. These 
parameters are not be estimated by a mechanism that uses PCA, 
because this is based on the standard deviation of measurements. 
Instead, we can use a simple imputation, like the substitution by 
previous value to estimate the missing values of these. Moreover, 
it is better to eliminate these parameters from the context vector 
XC, during the intervals that are constant. 
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Figure 5. The original signal is blue, the reconstructed is green 
and the inaccurate is red. (a) One acceleration signal. (b) ECG 

signal (c) Arterial pressure signal 
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Figure 6. The sum of squares of RE using (a.) all available and 
(b.) m vectors to construct PCA model with m size of moving 

window. 

In addition, we examine the behavior of the FIS in the missing 
value substitution problem. We assess the capability of the FIS to 
identify any missing value for a sensor stream with correlated 
contextual parameters. Specifically, we measure the identification 
error each time a missing value occurs, i.e., e(t) = ||X(t) – X’(t)||. 
That is, the context X at time t is the vector X(t) = [X1(t), X2(t), 
X3(t)] and X3(t) is strongly correlated with X1(t) and X2(t) (we set 
correlation threshold ε = 0.8 – see Section 4.1). The missed 
context X’(t) derives if we miss the value of X3 every two 
samples, i.e., frequency of missing value is 0.5Hz providing that 
we obtain one sample every second. In the following experiment 
we correlate the X and Y acceleration values from sensors with 
the Z acceleration and we require that the FIS is able to identify 
and replace any missing value from the Z acceleration. Fig. 8 
depicts the e(t) of the identification of the missing context X’(t). 
In addition, we evaluate the identification system with X(t) = 
[X1(t), X2(t), X3(t)] where there is correlation between the X = 
X1(t) and Y = X2(t) acceleration values from sensors with the 
ECG signal X3. As shown in Fig. 9, the FIS identifies such 
correlation and replaces the missed ECG signal satisfyingly.  
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Figure 7. The sum of squares of RE of 100 samples in regard 

of appearance rate of missing values. 
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Figure 8. The identified Z acceleration and the corresponding 
identification error when adopting the FIS. 
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Figure 9. The identified ECG signal and the corresponding 

identification error when adopting the FIS. 

6. CONCLUSIONS 
In this paper, we proposed two methods of substitution of the 
missing values derived from data streams of wireless bio-sensor 
networks. These methods are based on linear relations among the 
contextual parameters that are used to monitoring patients state. 
One of these, the RPPCA has low computational cost in some 
cases. In addition the FIS replaces any identified correlated 
missing value but with more computational const than the 
RPPCA. Moreover, the FIS assumes that the missing values have 
at least some correlation with the observations. We discussed a 
problem that derived from the nature of some medical parameters 
like heart’s pulse. We are currently implementing the 
functionality of the described methods in wireless sensor 
networks on some areas, like environment monitoring. We are 
planning to extend these methods to detect other types of failures, 
like outliers that are not evident. This is important in health care 
applications because it can reduce the false alarms or detect 
possibly the aberrations of nature functions. 
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