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ABSTRACT 

Nomadic computing is a term for describing computing 
environments where the nodes are mobile and have only ad hoc 
interactions with each other. Evidently, context aware applications 
are a key ingredient in such environments. However, nomadic 
nodes may not always have the capability to sense their 
environment and infer their exact context. Hence, applications 
carried by the nodes will not be able to execute properly. In this 
paper, we propose an architecture for collaborative exchange of 
contextual information in an ad hoc setting. This approach is 
called "context foraging" and is used for disseminating contextual 
information based on a publish/subscribe scheme. We present the 
algorithms required for such architecture along with the dynamic 
event indexing techniques used by the system. The efficiency of 
the suggested approach is assessed through simulation results. 
Our proposal is investigated and implemented in the context of 
the ICT IPAC Project.  

Categories and Subject Descriptors 

H.3.4 [Systems and Software]: Current awareness systems 

(selective dissemination of information--SDI), C.2.4 [Distributed 
Systems] Distributed applications  

General Terms 

Algorithms, Design, Experimentation 

Keywords 

Collaborative sensing, nomadic computing, publish-subscribe  

1. INTRODUCTION 
Nomadic Computing (NC) is the term referring to highly variable 
computing and communication environments which serve 
nomadic users [1]. Key characteristics of nomadic users are: 

• frequent relocation (following various mobility patterns),  

• use of low-power and low-capability devices, and  

• use of mobile and adaptive applications.  
The communication part of such environments resembles mobile 
ad hoc networks (MANETs), but their added value goes beyond 
ad hoc communications. Specifically, one key aspect is the 
provisioning of applications that really adapt to the ever changing 
environment in a seamless way. This is an approach also taken in 

Pervasive and Ubiquitous Computing environments. In this paper 
we propose a novel framework for implementing context 
awareness in a nomadic ecosystem through efficient collaboration 
between its nodes. Specifically, mobile nodes request context they 
cannot sense with their own sensors from other nodes in their 
vicinity. This paradigm of context information dissemination is 
referred to as “Context Foraging” since it resembles the concept 
of Cyber Foraging [2].    

Efficiency in such environments is very important for two basic 
reasons: 
1. Nodes are typically devices with limited resources (small or 

no user interfaces, battery lifetime constraints, limited 
memory and processing power, etc.). Hence, applications 
should be very careful regarding the resources they utilize.  

2. There is no easy way to implement reliable and efficient 
networking protocols (even ad hoc routing protocols) so it is 
common to exploit variations of broadcasting. Hence, 
applications should be very careful as to the volume of data 
they disseminate.    

From the above, it becomes apparent that every service or 
application deployed in such environment should minimize the 
network traffic it generates. 
In the case of context foraging, an additional requirement is the 
ability of the nodes to detect context changes. This is very 
important since detection of such changes may affect the behavior 
of the applications. Such detection is performed in two phases. 
Firstly, a node collects all, or as much as possible, sensor readings 
of interest. Then, a reasoning process takes place locally and 
context changes are inferred. In this paper we mostly deal with the 
first phase. However, the system model presented in Section 2, 
describes also the elements that enable the second phase. In fact, 
knowledge representation and reasoning techniques in mobile and 
embedded computing is an area of ongoing research.   

The rest of the paper is organized as follows. Section 2 describes 
the nomadic computing environment and the proposed 
architecture for Context Foraging. Some assumptions regarding 
the nodes, the network and the application modeling are also 
mentioned. In Section 3 we describe in detail the algorithms 
involved in the proposed architecture. A performance evaluation 
through simulations that validates the efficiency of the system is 
presented in Section 4. Finally, the paper concludes with related 
work and directions for future research.    

2. SYSTEM MODEL AND ASSUMPTIONS  
Each node has a Context Foraging layer in its stack which 
comprises just one service of a more generic middleware (see 
Figure 1). This component is clearly independent from the upper 
(application) and lower (communication) layers. However, some 
basic assumptions are made for these layers, as described in the 
following paragraphs. 
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Figure 1. Architecture of a node 

2.1 Application and Context Modeling  
Regarding the applications, we assume that they are written with 
the aid of declarative languages (i.e., rule languages). Writing 
context-aware and situation-aware applications by following a 
declarative (knowledge-based) approach is a widely-adopted 
paradigm with many advantages as reported in [4]. In the 
following paragraphs we define the knowledge representation 
elements that are used in the framework. 

Context is represented through an ontology with two types of 
relationships between its concepts: subsumption (is-a) and part-of 
relationships (part-of relationships are mainly used for spatial 
context representation). A sample context ontology is shown in 
Figure 2a. Other similar ontologies can be found in [4][5][6].  
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Figure 2. a) a sample context ontology, b) a corresponding 

situation ontology 

Let C be the set of all context classes (types). Let LCN be the set of 
context classes that are supported by node N, i.e., its “local” 
context. In other words, node N has all the required sensors to 
produce values for these context classes. Each class Ci has a 
relationship (aka, property) vali, the value set of which (also 
called “range” in ontology terminology) is denoted as R(Ci). 
Moreover, each Ci has a default spatial validity value SVCi, that 
reflects the range within which the values for a context type are 
regarded valid (i.e., they are expected to be approximately the 
same, see also Definition 3).  

A context class may not always be a one-to-one correspondence to 
a specific sensor. Higher level context classes can be described 
through conjunctive rules of the form:  

 (val1 op V1) ^ (val2 op V2) ^ … ^ (valm op Vm) �  Ci 

where i>m, Ci ∈  C, Vi ∈  R(Ci), op ∈  {>, <, =, <=, >=}  

Definition 1. Context Request (CReq) 

An atomic context request generated by a node is defined as: 
CReq := vali op Vi , Vi ∈  R(Ci), op∈{>, <, =, <=, >=} 

A composite context request generated by a node N is defined as a 
set of atomic requests (all atomic requests are treated separately 
during request handling and not as a conjunctive experssion):  

CReq’ := {val1 op V1, … , vali op Vi, }, Vi ∈  R(Ci), op∈{>, <, 
=, <=, >=} 

Definition 2. Context Response (CRes) 

A context response is a set that contains one or more (context 
class, context value) pairs:  

CRes := {val1 = V1, …, vali = Vi}, Vi∈R(Ci). 

A context response has also a spatial validity parameter which is 
the maximum of the individual spatial validity values included in 
the response. 

Definition 3. Spatial Validity of a Context Request (SVCReq) 

The range within which the context values included in the request 
are valid/useful for the requesting node. Such range may depend 
on the degree of locality of the phenomenon and/or other 
application characteristics. If we assume that we adopt circular 
spatial modeling, then SVCReq is the radius of a circle, with center 
the current position of the Context Requestor. This circle includes 
all nodes that can provide valid values for the CReq context 
classes. If SVCReq is explicitly defined by the application for a 
specific request then it applies to all involved context classes. 
Otherwise, for each atomic CReq, the default spatial validity value 
(SVCi) applies. Note that similarly to requests, context responses 
also have a spatial validity that controls their dissemination.   

Definition 4. Temporal Validity of a Context Request (TVCReq) 

It is the time period, measured from the moment the initial request 
was issued, until the moment the request is not regarded valid. 
This value is a measure for the context freshness. Alternatively 
one can think of TVCReq as the time interval between two 
retransmissions of CReq. 

2.1.1 Situation-aware Computing 
Situations can be regarded as higher-level descriptions for the 
current activities and contextual status of nodes/users, and they 
affect the actions that the applications should take.  

Let S be the set of all situation classes (types). If we assume that 
we are interested in situations regarding users, nodes, and the 
environment, then S can be divided to three subsets, Su, Sn and Se, 
respectively. Situations can be described through an ontology, too 
(see Figure 2b), and for their classification specific rules apply.  

Definition 5. Situation Classification Rule (SCR) 

A rule that defines, either through necessary (or necessary and 
sufficient) conditions, a situation of a user, a node, or the 
environment. The general form of such rule is:  

SCRi := S1^…^Sk^ (val1 op V1)^(val2 op V2)^ …^( valm op Vm) � 
Si (SVSi, TVSi)  

where i>k and � denotes that the conditions in the rule body are 
necessary (≡ is used for necessary and sufficient conditions). SVSi 
is the spatial validity of SCRi. Only Si that are subclasses of Se can 
have spatial validity and in this paper we deal only with such type 
of situations. TVSi is the temporal validity of SCRi.  

Each condition in the rule’s body can be evaluated to one of the 
following status values: 



• Unknown: the context class of the condition is not in LCN  

• True: the context class of the condition is in LCN and the 
condition is satisfied by the current context value 

• False: the context class of the condition is in LCN and the 
condition is not satisfied by the current context value. 

The conditions that are either true or false are called local 

conditions while the conditions that participate in the rule’s 
context request are called remote conditions. The conditions of a 
rule SCRj with status unknown will eventually form a Context 
Request CReqj which inherits the SVSj and TVSj values.  

Finally, each SCR has a “trigger level”. This level is a value 
indicating how closely to firing the rule is (i.e., the number of 
satisfied local conditions divided by all local conditions). The 
trigger level assumes the value 1 when all the local conditions are 
satisfied and 0 when no local condition is satisfied. The usage of 
the trigger level is described in Section 3.5.    

As already stated, situations are used for determining the 
application actions in a declarative way.   

Definition 6. Action Rule1 (AR) 

A rule that defines the actions that should be triggered if all the 
conditions in its body are satisfied. For example, such actions 
could be method invocations if procedural attachments are 
supported by the rule language employed. The conditions involve 
situations and, thus, indirectly context values. The general form of 
such rule is:  

ARi := S1^S2^…^Sm � SomeAction (SVARi) 

where SVARi denotes its spatial validity.2 

2.1.2 Example 
The following example better explains the aforementioned 
definitions. Let us assume that a node N1 has only a temperature 
sensor and the action rule: 

Fire � BroadcastAlert (100) 

meaning that if fire is detected within a range of 100 space units 
then the node should broadcast an alert. Let us further assume that 
the situation Fire is defined through the SCR:  

Temperature>80 ^ Humidity<10 � Fire (100, 10) 

, where 100 (SVCReq) is the range within which humidity values 
are regarded valid. The value 10 (TVCReq), defines how often 
context requests for humidity values will be retransmitted to 
nodes that have humidity sensors. Hence, N1, every 10 time units, 
will issue a CReq of the form: 

Humidity<10 

and this request will reach only the nodes in the range of 100 
space units. When a node with a humidity sensor satisfies the 
condition of the CReq (e.g., humidity is 5 degrees) it will 
broadcast a CRes: 

Humidity=5 

which will also reach the nodes within range of 100 space units. 
Note that the terms Fire, Temperature and Humidity should be 
defined in the ontologies of Figure 2. 

                                                                 
1 We just deal with SCRs because ARs are just another abstraction layer. 

However we mention them for completeness purposes. 
2 Temporal Validity is not defined for action rules since it mainly 

concerns lower level rules (i.e., SCR)  

2.2 Communications and Other Assumptions 
For the communication layer, the main assumption is that we do 
not have any means of high-level networking protocols and 
information exchange is performed through (some variant of) a 
broadcasting scheme. The broadcasting is performed based on 
short range communications (e.g., ZigBee, IEEE 1609 WAVE, 
IEEE 802.11 ad hoc mode) and is not global. Several efficient 
variants of broadcasting have been proposed in the literature such 
as epidemic information dissemination [7], gossiping [8], etc. 
Another assumption is that some special flags in packet headers, 
indicating the types of messages used by the scheme (i.e., context 
requests, context responses), can be set.  

Finally, the proposed framework assumes an application 
environment with the following characteristics:  

• all nodes are mobile, 

• there  is no assumption as to how many nodes carry sensors 
or other context detecting devices, 

• all nodes are willing to collaborate so that their respective 
context-aware applications are executed in an optimal way, 

• each node can estimate its location (through some type of 
location sensor, e.g., GPS), 

3. FRAMEWORK ARCHITECTURE 

3.1 Context Foraging Workflow 
There are three roles that a node can assume:  
1. Context Requestor (CR), if the node requests context values 

from other nodes.  
2. Context Relay (CRel), if a node does not have the sensors 

required by a context request or is not interested in the 
context response contents. CRels just forward messages that 
they have not forwarded before. 

3. Context Provider (CP), if it can sense and send to other 
nodes some type of context.  

In each node there is an instance of the context ontology and the 
situation ontology along with the SCRs. Each application, upon 
deployment, contributes its action rules to the knowledge base of 
the node. If the Action Rules of some application contain 
situations with remote conditions then the respective context 
requests are created and disseminated. Once a CReq reaches a CP 
then it is registered as an event filter in it. When an event 
satisfying a filter is triggered by the CP sensor values, a CRes is 
disseminated in the network.  

The overall scheme a variant of a content-based publish/subscribe 
scheme, adjusted appropriately for the nomadic computing 
paradigm. Specifically, each publisher (CP) is also a broker, since 
publish/subscribe systems for networks with high topology 
change rate should store the event interests very close to the 
information sources. Moreover, some type of subscription 
covering (aggregation) is performed, extending that found in 
content-based networking schemes (e.g., [13]).  

3.2 Context Requestor Design 
A CR can collect context values required by its knowledge base 
(Action and Situation Classification Rules) and not provided by 
its own capabilities. Context foraging adopts the following 
principles: 

• The context values received through Context Responses are 
spatially valid. 



• The context values are fresh, i.e., context values are received 
as soon as they are generated, ensuring a good sensitivity in 
detecting situation updates. No context-caching is used. 

Moreover, the two non-functional, efficiency requirements 
mentioned in Section 1 apply, too. Listing 1 presents the 
algorithms implemented in the CR. The requestContext algorithm 
can be executed periodically (for each SCR rule) or whenever 
some rules are “close to fire” (see Section 3.5). The 
responseHandler algorithm is executed whenever a new CRes is 
received by the CR. 
  

function requestContext 

Input: SCR: an array of all SCRs 

1: while true 

2:   for i=1 to SCR.length do 

3:     if SCR[i].hasRemoteConditions()  

4:     then sendRequest(SCR[i].remoteConditions); 

5:   end for 

6:   rescheduleRequest(SCR[i].remoteConditions, SCR[i].TV);   

7: end while 

 

function responseHandler  

Input: CRes: the array that contains all conditions of the Context Request,  
SuppClasses: the array of all context classes supported by the node 

1: if isSpatiallyValid(CRes) then  

2:   if CRes.classes not in SuppClasses then  
3:     assert(CRes);    
4:     fireRules();   
5:   forward(CRes); 

Listing 1. Request Formation and Response Handling 

3.3 Context Provider Design 
Each node that can assume a context provider role has an index 
data structure used for two purposes: a) as a registry of all event 
filters received through context requests, and b) as a mechanism 
that matches events (new sensor values) with event filters  
The main idea is that context requests will be registered (with 
their respective timeouts) in this index. The sensor stream will be 
also fed into this index so that sensor values that match some 
filters generate events that are disseminated through the network. 
Hence, this index will act like a message forwarding engine that is 
typically found in content-based network routers [13]. Due to size 
limitations we do not describe this event generation process, 
which is rather straightforward. The only special point is that the 
context responses are also assigned a Spatial Validity value which 
is the maximum of the spatial validities included in the response 
elements (so that all relevant requestors can be reached). 
The structure of this index is depicted in Figure 3. In this index, 
the arrays FILTERS and EQUALS are sorted. Specifically the 
FILTERS array contains the context conditions (also called event 
filters or subscriptions) received through incoming CReqs and is 
sorted in descending order for the ‘<’ and ‘<=’ operators and in 
ascending order for all other operators. Sorted arrays are used 
because the readings in this index (new context values, generated 
by sensors) are expected to considerably outnumber the updates 
(new event subscriptions). The EQUALS array (also stores 
contextual conditions) constitutes an optimization in order to 
avoid unnecessary filters. For example, for the event 
“contextClass[1] = 22”, we do not create an additional filter in the 
FILTERS array of the ‘=’ operator since there is an overlap with 

an existing filter (“contextClass[1] >20”). Finally, the timeout 
values are used for deciding the expiration of the filters and the 
SV values for setting the spatial validity parameter in the context 
response. Listing 2, describes how this index is used during 
request handling in CPs.  
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Figure 3. The index of event filters 

function requestHandler 

Input: CReq: the request object, SuppClasses: the array of all context 
classes supported by the node 

1: for i=1 to CReq.conditions.length do 

2: begin 

3:   if isSpatiallyValid(CReq.conditions[i])  

4:     if CReq.conditions[i].contextClass in SuppClasses then 

5:       subscribeEvent(CReq.conditions[i]);   

6: end; 

7: sendRequest(CReq);  
 

function subscribeEvent 

Input: CReq: an atomic context request, index: the index of Figure 3. 

1: if CReq.op not in index[CReq.contextClass].op then 
2:   newOp = index[CReq.contextClass].op.add(CReq.op); 
3:   newOp. FILTERS.add(CReq.value, CReq.timeout, CReq.SV); 

4: else 

5:   filter = index[CReq.contextClass].op[CReq.op]. FILTERS; 
6:   filter.addFilter(CReq.value, CReq.timeout); 
 

function addFilter 

Input: CReq: an atomic context request, index: the index of Figure 3. 

1:  currentValue =    
index[CReq.contextClass].op[CReq.op].FILTERS.getValue(1); 

2:  if CReq.op = ‘>’ and currentValue > CReq.value or  

    CReq.op = ‘>=’ and currentValue >= CReq.value  or 

    CReq.op = ‘<’ and currentValue < CReq.value or 

    CReq.op = ‘<=’ and currentValue <= CReq.value then 

3:  then this.addFirst(CReq.value, CReq.timeout, CReq.SV); 

4:  else if CReq.value in this.value then  

5:    this.rescheduleTimeout(CReq.value, CReq.timeout, CReq.SV); 

6:  else 

7:    this.add(CReq.value, CReq.timeout); 

8:  if CReq.op = ‘=’ and  CReq.value >  

     index[CReq.contextClass].op[‘<’].this.getValue(1) and CReq.value <    

     index[CReq.contextClass].op[‘>’].this.getValue(1) then 

9:    index[CReq.contextClass].op[‘=’].filters.add(CReq.value,   
       CReq.timeout, CReq.SV); 

10: else 

11:   this.addEqual(CReq.value); 
 

Listing 2. Request Handling in Context Providers 

 



Since, in nomadic computing nodes relocate frequently, we do not 
want to store all the event filters infinitely in the index since the 
spatial validity of the respective events (i.e., context responses) is 
affected by the nodes’ mobility (for both types of nodes, CR and 
CP). For that purpose, we use timeouts for the filters and the 
algorithm in Listing 3 handles their expiration. These timeouts are 
scheduled in a typical job scheduler. What this algorithm does, is 
to remove the expired filters from the index and the job scheduler 
but also keep the index in a consistent state. Specifically, if there 
is an EQUALS array linked to a FILTERS element, then it either 
links it to another element or registers its elements as new filters 
under the ‘=’ operator (the second case holds if the 
“contextClass[1]>20” filter in Figure 3 expires). As shown in line 
6, upon removal of a FILTERS element, its associated EQUALS 
array, if any, is linked to the left element. This happens due to the 
sorting of the FILTERS arrays.   

Algorithm filterExpired 

Input: expFilter: the expired filter, index: the index of Figure 3 

1: if expFilter.op != ‘=’ and expFilter =     

    index[expFilter.contextClass].op[expFilter.op].FILTERS.get(1) then 

2:   if expFilter.equal is not empty then 

3:     for all i in EQ do  
4:       index[expFilter.contextClass].op[‘=’].FILTERS.add(i.value,    
i.timeout, i.SV); 

5: else if expFilter.equal is not empty then 

6:     move(expFilter.equal); //move the equal array to the left filters item 
7:  FILTERS.remove(expFilter);  //removes it from the filters array and the   
scheduler 

Listing 3. Expiration of event filters 

 

3.4 Some special cases 
Given the above algorithms, a low overhead event-driven 
collaborative sensing scheme can be implemented. The 
advantages are that no continuous polling, which is very resource 
demanding is used, and useless event filters are removed by the 
filter expiration mechanism. Moreover, this scheme copes well 
with the following problematic cases: 

A) The CR leaves the region after it has sent a CReq: In this case 
the CP nodes transmit context responses just until the CR’s event 
filters expire.  

A.1) Even worse, some context responses to this CReq, which are 
spatially invalid, reach the CR when it is far from its initial 
position: Spatial validity is set for context responses (since we 
assume all nodes know their location). 

B) The CPs with registered event filters go away from the CR: 
They transmit context responses to their new neighborhood just 
until their timeouts expire. After all, the new neighbors may be 
also interested in the context values included in these responses. 

However, one possible case that may arise and if not handled may 
affect the sensitivity of the system is the following:  

A CR disseminates a CReq for a context class C with a long time 
validity (late expiration). We remind that long time validity is 
desirable because it reduces the traffic and the utilization of other 
node resources used during CReq dissemination. We assume that 
no neighbor of the CR is a CP for this context class. Then, just 
after the CReq dissemination, a new node appears that can fulfill 

this request. In this case, the new node will be able to sync with 
the other nodes only after the expiration of the previous request 
and the retransmission of a new one.  

To deal with this case, each node could possibly retransmit the 
CReqs received by others or generated by itself to all of its one-
hop neighbors upon change in its one-hop neighborhood 
topology. However, we did not include this functionality in the 
scheme since some first simulations showed that it introduces 
considerable communication overhead. 

3.5 Lazy Context Requesting 
A last mechanism proposed for the Context Foraging architecture 
is the “Lazy Context Requesting” and it refers to how and when 
CReqs should be generated. Specifically, a situation may never 
happen or may happen only very seldom. In such case, exploiting 
the context foraging scheme described in the previous section is 
not probably the most efficient solution. For example, let us 
assume the following situation rule: 

(Temperature>80)^(Humidity<20)^(Smoke=true) � Fire 

and that the node can provide Humidity and Smoke values (these 
are the local conditions of the rule). Obviously, it is a waste of 
resources to initiate the context foraging process when 
Smoke=false and Humidity>=20 since the fire event will never be 
detected even if Temperature values, received from neighbor 
nodes, are higher than 80 degrees. 

In order to optimize the context foraging process the CReqs (i.e., 
event subscriptions) are not sent in a static but in a context-aware 
way. The main concept is that a node sends CReqs derived from a 
situation classification rule to the network only when its own 
context values satisfy the local conditions of the rule. Hence, there 
is a meta-rule engine that monitors the trigger level of the SCRs. 
Once a rule’s trigger level passes a threshold, then the 
corresponding CReq is broadcast (i.e., the sendRequest function is 
called). The threshold involved in this mechanism may depend on 
the criticality of the rule (i.e., critical rules have lower thresholds) 
or other background knowledge we have for the rule so that 
premature context requesting can be performed, if necessary. 

4. PERFORMANCE EVALUATION 
In order to assess the performance of the proposed scheme we ran 
several simulations, where we compared it to an alternative 
scheme that satisfies many of the problem requirements. This 
scheme (called Context Polling, or CPol for brevity) is simpler 
and with some inherent limitations but, in our opinion, seems to 
be one of the most promising alternatives for the specific domain. 

In CPol, each Context Requestor periodically sends CReqs to 
other nodes. If the Context Providers, satisfy some (parts of) 
requests, they immediately send their context responses and 
discard the CReq. Hence, the scheme is totally stateless, which is 
also one of its key advantages. However, the main drawback is 
that as the period increases, the CRs cannot detect context 
changes of interest. On the other hand, as will be shown in the 
following section, if the period is set to one time unit then the 
communication overhead is too high.  

4.1 Simulation Setup 
In order to assess the performance of the context foraging scheme 
we ran several simulation scenarios, using the following metrics: 



1) Number of exchanged messages (#Msg). It involves all 
CReq, CRes and their corresponding forwards. 

2) Average Situation Detection Ratio (ASDR). The average 
SDR over all Context Requestors. Situation Detection Ratio 
for a CR i is defined as:  

A
SDRi

B

=  

where A: Number of SCRs fired by node i, B: Number of SCRs 
that should be ideally fired by node i. The parameter (counter) B 
is increased by one each time a combination of sensor values that 
would trigger a SCR of the node i was observed within the area 
where the rule is spatially valid. 
Other typical metrics in publish/subscribe systems such as 
delivery latency are not useful in our case, because all events are 
local to the requesting node. Hence, the expected delay of a 
context response is known a priori and it depends on the spatial 
validity assigned to the corresponding request.   

The first part of the simulation compares the performance of the 
two schemes, CFor (for Context Foraging) and CPol. The second 
part tries to evaluate the use of the lazy context requesting 
mechanism. Hence, in Part B we ran the set of experiments B1 
and B4 that are the same as the A1 and A2 but with lazy context 

requesting enabled. 

Table 1 summarizes the default setup parameters (for both parts) 
while Table 2 presents the parameters for the specific 
experiments. 

Table 1. Simulation Setup – Default parameters 

# of nodes 100 

Simulation time  200* 

Mobility model Random waypoint (see [3]): 
Maximum pause time: 20  
Min speed: 0 

# of SCR per CR 2 

SV of SCRs 110  

Communication range 50 

Environment dimensions 500x500 

Trigger level for Lazy requesting 0.66 (i.e., 2 out of 3 conditions) 

# of avg one-hop neighbors ~3  
*All times are expressed in time units 

 
The following SCRs were assigned to the CRs for Part A: 

Rule # of CRs 

SCR1: (Temperature>80) ^ (Humidity <20) � Event 1 
SCR2: (GasA>40) ^ (GasB>50) � Event 2 

1/3 of CRs 

SCR3: (Humidity <20) ^ (Smoke=true) � Event 3 
SCR4: (GasB>50) ^ (Smoke=true) � Event 4 

1/3 of CRs 

SCR5: (Temperature>80) ^ (Smoke=true) � Event 5 
SCR6: (GasA>50) ^ (Smoke=true) � Event 6 

1/3 of CRs 

 
This division of the CRs to three sets, with rules that do not fully 
overlap in terms of context classes, was made so that not all nodes 
produce the same context requests. If that was the case, the 
requests would result in being “global” and would bias the 
simulation results in scenarios with mobile nodes.  
The two rules in Part B that were shared by all CRs are:  
SCR7: (Temperature>80) ^ (Humidity <20) ^ (Smoke=true) � Event 1 
SCR8: (GasA>40) ^ (GasB>50) ^ (Smoke=true) � Event 2 

 

The CRs in Part A are not CPs (i.e., do not have any sensors). In 
Part B, the CRs have Humidity, Smoke and GasB sensors. In both 
parts, the CPs (excluding the CRs in Part B) have one sensor each 
and each context class is provided by an equal number of CPs, on 
average. The sensor values were generated once and used in all 
runs of an experiment. The sensor values are random and the 
difference of two subsequent values follows a Normal distribution 
N(0,1). 

Table 2. Simulation Setup – Experiments 

Part A 

Experiment A1 

Mobility model Max speed: 0, 1, 2, 4, 10, 20 

# of CR 40 

# of CP 40 

Experiment A2 

Mobility model Max speed: 2 

# of CR 40 

# of CP 40 

SV of SCRs 30, 50, 70, 90, 110 

Part B 

Experiment B1 (same as A1) 

Experiment B2 (same as A2) 

4.2 Simulation Results 
A first and rather trivial observation is that if we set the time 
validity of all SCRs in the Context Foraging scheme equal to one 
time unit, the scheme becomes identical to CPol with period one 
time unit, in terms of ASDR. However, the CFor scheme transmits 
much fewer messages due to the response aggregation that is 
performed through the index.   

Figures 4, 5 summarize the results for experiment A1. Two 
variants of Context Foraging (CFor) and two variants of Context 
Polling (CPol) are compared (the numbers after the scheme names 
denote the temporal validity of the context requests). All schemes 
except for CPol2 have similar event detection capability (ASDR). 
However, the CFor schemes exchange considerably fewer 
messages. Moreover, the message overhead of CPol increases 
exponentially, whereas that of CFor linearly (Figures 4 and 6).  

Increasing the TV for CFor does not affect significantly the 
ASDR values and provides substantial message reduction. 
However, CPol is more sensitive to increases of TV (Figures 4 
and 5). 

Increasing the mobility of the nodes has a big impact on the 
messages exchanged in CPol, a slight impact on CFor and it does 
not affect the situation detection capability of the nodes. A similar 
behavior is observed when increasing the spatial validity of the 
rules. CFor is much more robust against such changes and does 
not degrade the node’s ASDR.  

When the Lazy requesting mechanism is enabled, the results are 
quite analogous. However, the volume of exchanged messages is 
about 3-10 times lower compared to the standard scheme. We 
should note at this point that we also used the idea of lazy 
requesting for the CPol scheme in Part B experiments.  

Another interesting point is that if we use the standard ASDR  
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Figure 4. A1: Number of exchanged messages as a function of 

the maximum speed 
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Figure 5. A1: ASDR as a function of the maximum speed 
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Figure 6. A2: Number of exchanged messages as a function of 

the spatial validity of the requests 
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Figure 7. A2: ASDR as a function of the spatial validity of the 

requests 

metric for Part B experiments, its values fall to ~20% (Figures 9 
and 11). This is something expected, because the nodes rely more 
on their own sensors for detecting situation changes than on other 
Context Providers. Does this mean that the nodes miss some 
events? The answer is “No”. The nodes have the same sensitivity 
to events but with much less message exchange and without 
exhaustion of their resources (due to unnecessary 
communications). In order to better demonstrate this we also 
provide in Figures 9 and 11 the results for ASDR’ (the upper lines 
in the figures). ASDR’ has the same nominator as ASDR but the  
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Figure 8. B1: Number of exchanged messages as a function of 

the maximum speed  
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Figure 9. B1: ASDR as a function of the maximum speed 

0

20000

40000

60000

80000

100000

120000

140000

60 90 120 150 180Spatial Validity

#
M

s
g

CPol1 CFor5 CFor10 CFor20
 

Figure 10. B2: Number of exchanged messages as a function of 

the spatial validity of the requests 
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Figure 11. B2: ASDR as a function of the spatial validity of the 

requests 

denominator takes into account only combinations where 2 out of 
the 3 conditions are satisfied by the requesting node itself. One 
can see that these values are approximately the same as those in 
Figures 5 and 7. 
In fact, if the sensor values are not random, the ASDR’ is 
expected to improve more, because real world situations do not 
tend to disappear rapidly, before even very close nodes can detect 
them. Hence, our next steps will be to replace the synthetic sensor 
datasets with real traces. 



5. RELATED WORK 
To our knowledge the application of the publish/subscribe 
paradigm to such dynamic environments, where networking 
protocols cannot be used, is an area with little results so far. 
Nevertheless, the mobile publish/subscribe model in general, has 
been an active research area during the last years. Several works 
have studied the special issues that arise when publishers or 
subscribers are mobile [9][10]. However, most of them assume 
that there is a MANET which implements some appropriate 
routing protocols or they employ routing-like structures for 
performing multicasting of the event notifications [12].  

The authors in [11] do not make most of the aforementioned 
assumptions and in that sense their setup is similar to ours. 
However, their work targets other application domains where 
event topics are more structured and, to some degree, predefined. 
In our scheme, the context requests define the topics of interest 
and can be arbitrary, depending on the current needs of the nodes. 
Another difference is the way the temporal validity is defined. 
Context foraging assigns a validity value to requests, filters and 
responses, while in the approach of [11] time validity is assigned 
to the generated events. Moreover, it is worth mentioning that the 
Context Foraging scheme does not build any type of topology 
tables or other structures. In the light of such inherent differences, 
further comparison with the above schemes seems difficult, if 
meaningful at all. 

6. CONCLUSION 
In this paper we presented a new architecture for collaborative 
sensing and nomadic context-aware applications. The proposed 
scheme is based on principles of publish/subscribe systems 
applied on fully mobile nodes carrying sensors and/or requiring 
sensor values for reasoning about their context. An evaluation and 
comparison to an alternative scheme clearly indicated the benefits 
of the proposed scheme with regard to the number of messages 
exchanged. Specifically, in all scenarios tested, the disseminated 
messages are much less than those of the alternative (polling-
based) scheme, with insignificant reduction in the situation 
detection capability of the nodes.   

Despite this encouraging evaluation, several topics are still open 
and deserve further investigation. One of them is how can the 
scheme protect itself from malicious nodes that frequently register 
events just to flood the network. Moreover, some other features 
could be studied. One of them is that the time interval (time 
validity) between request retransmissions (Listing 1, 
requestContext algorithm, line 6) could depend on the node 
mobility or, equivalently, the neighbourhood change rate or the 
criticality of the rule (if it can be somehow defined). Another one 
is the caching of the context responses for some time units, either 
in the relay nodes or the CRs.  

Finally, we should mention that this work is part of the IPAC 
(Integrated Platform for Autonomic Computing) European FP7 
project [14]. IPAC aims at delivering a middleware and service 
creation environment for developing embedded, intelligent, 
collaborative, context-aware services in mobile nodes. IPAC 
relies on short-range communications for the ad hoc realization of 
dialogs among collaborating nodes.  
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