
An Innovative Architecture for Context Foraging
Vassileios Tsetsos

Pervasive Computing Research Group
Dept. of Informatics and Telecommunications

University of Athens, Greece, Panepistimiopolis,
Ilissia, 15784

b.tsetsos@di.uoa.gr

Stathes Hadjiefthymiades
Pervasive Computing Research Group

Dept. of Informatics and Telecommunications
University of Athens, Greece, Panepistimiopolis,

Ilissia, 15784

shadj@di.uoa.gr

ABSTRACT

Nomadic computing is a term for describing computing
environments where the nodes are mobile and have only ad hoc
interactions with each other. Evidently, context aware applications
are a key ingredient in such environments. However, nomadic
nodes may not always have the capability to sense their
environment and infer their exact context. Hence, applications
carried by the nodes will not be able to execute properly. In this
paper, we propose an architecture for collaborative exchange of
contextual information in an ad hoc setting. This approach is
called "context foraging" and is used for disseminating contextual
information based on a publish/subscribe scheme. We present the
algorithms required for such architecture along with the dynamic
event indexing techniques used by the system. The efficiency of
the suggested approach is assessed through simulation results.
Our proposal is investigated and implemented in the context of
the ICT IPAC Project.

Categories and Subject Descriptors

H.3.4 [Systems and Software]: Current awareness systems

(selective dissemination of information--SDI), C.2.4 [Distributed
Systems] Distributed applications

General Terms

Algorithms, Design, Experimentation

Keywords

Collaborative sensing, nomadic computing, publish-subscribe

1. INTRODUCTION
Nomadic Computing (NC) is the term referring to highly variable
computing and communication environments which serve
nomadic users [1]. Key characteristics of nomadic users are:

• frequent relocation (following various mobility patterns),

• use of low-power and low-capability devices, and

• use of mobile and adaptive applications.
The communication part of such environments resembles mobile
ad hoc networks (MANETs), but their added value goes beyond
ad hoc communications. Specifically, one key aspect is the
provisioning of applications that really adapt to the ever changing
environment in a seamless way. This is an approach also taken in

Pervasive and Ubiquitous Computing environments. In this paper
we propose a novel framework for implementing context
awareness in a nomadic ecosystem through efficient collaboration
between its nodes. Specifically, mobile nodes request context they
cannot sense with their own sensors from other nodes in their
vicinity. This paradigm of context information dissemination is
referred to as “Context Foraging” since it resembles the concept
of Cyber Foraging [2].

Efficiency in such environments is very important for two basic
reasons:
1. Nodes are typically devices with limited resources (small or

no user interfaces, battery lifetime constraints, limited
memory and processing power, etc.). Hence, applications
should be very careful regarding the resources they utilize.

2. There is no easy way to implement reliable and efficient
networking protocols (even ad hoc routing protocols) so it is
common to exploit variations of broadcasting. Hence,
applications should be very careful as to the volume of data
they disseminate.

From the above, it becomes apparent that every service or
application deployed in such environment should minimize the
network traffic it generates.
In the case of context foraging, an additional requirement is the
ability of the nodes to detect context changes. This is very
important since detection of such changes may affect the behavior
of the applications. Such detection is performed in two phases.
Firstly, a node collects all, or as much as possible, sensor readings
of interest. Then, a reasoning process takes place locally and
context changes are inferred. In this paper we mostly deal with the
first phase. However, the system model presented in Section 2,
describes also the elements that enable the second phase. In fact,
knowledge representation and reasoning techniques in mobile and
embedded computing is an area of ongoing research.

The rest of the paper is organized as follows. Section 2 describes
the nomadic computing environment and the proposed
architecture for Context Foraging. Some assumptions regarding
the nodes, the network and the application modeling are also
mentioned. In Section 3 we describe in detail the algorithms
involved in the proposed architecture. A performance evaluation
through simulations that validates the efficiency of the system is
presented in Section 4. Finally, the paper concludes with related
work and directions for future research.

2. SYSTEM MODEL AND ASSUMPTIONS
Each node has a Context Foraging layer in its stack which
comprises just one service of a more generic middleware (see
Figure 1). This component is clearly independent from the upper
(application) and lower (communication) layers. However, some
basic assumptions are made for these layers, as described in the
following paragraphs.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, to republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
MobiDE'09, June 29, 2009, Providence, RI, USA
Copyright 2009 ACM 978-1-60558-712-7/09/06... \$10.00

Context-aware Nomadic
Applications

Short Range Communications

Context Foraging

Context Modeling & Reasoning

Figure 1. Architecture of a node

2.1 Application and Context Modeling
Regarding the applications, we assume that they are written with
the aid of declarative languages (i.e., rule languages). Writing
context-aware and situation-aware applications by following a
declarative (knowledge-based) approach is a widely-adopted
paradigm with many advantages as reported in [4]. In the
following paragraphs we define the knowledge representation
elements that are used in the framework.

Context is represented through an ontology with two types of
relationships between its concepts: subsumption (is-a) and part-of
relationships (part-of relationships are mainly used for spatial
context representation). A sample context ontology is shown in
Figure 2a. Other similar ontologies can be found in [4][5][6].

Environmental

Context

Temperature

User Context

Location Mood

Context

is-a

Environmental

Situation User Situation

InsideBuilding Happy

Situation

is-a

Fire

(a)

(b)

Figure 2. a) a sample context ontology, b) a corresponding

situation ontology

Let C be the set of all context classes (types). Let LCN be the set of
context classes that are supported by node N, i.e., its “local”
context. In other words, node N has all the required sensors to
produce values for these context classes. Each class Ci has a
relationship (aka, property) vali, the value set of which (also
called “range” in ontology terminology) is denoted as R(Ci).
Moreover, each Ci has a default spatial validity value SVCi, that
reflects the range within which the values for a context type are
regarded valid (i.e., they are expected to be approximately the
same, see also Definition 3).

A context class may not always be a one-to-one correspondence to
a specific sensor. Higher level context classes can be described
through conjunctive rules of the form:

 (val1 op V1) ^ (val2 op V2) ^ … ^ (valm op Vm) � Ci

where i>m, Ci ∈ C, Vi ∈ R(Ci), op ∈ {>, <, =, <=, >=}

Definition 1. Context Request (CReq)

An atomic context request generated by a node is defined as:
CReq := vali op Vi , Vi ∈ R(Ci), op∈{>, <, =, <=, >=}

A composite context request generated by a node N is defined as a
set of atomic requests (all atomic requests are treated separately
during request handling and not as a conjunctive experssion):

CReq’ := {val1 op V1, … , vali op Vi, }, Vi ∈ R(Ci), op∈{>, <,
=, <=, >=}

Definition 2. Context Response (CRes)

A context response is a set that contains one or more (context
class, context value) pairs:

CRes := {val1 = V1, …, vali = Vi}, Vi∈R(Ci).

A context response has also a spatial validity parameter which is
the maximum of the individual spatial validity values included in
the response.

Definition 3. Spatial Validity of a Context Request (SVCReq)

The range within which the context values included in the request
are valid/useful for the requesting node. Such range may depend
on the degree of locality of the phenomenon and/or other
application characteristics. If we assume that we adopt circular
spatial modeling, then SVCReq is the radius of a circle, with center
the current position of the Context Requestor. This circle includes
all nodes that can provide valid values for the CReq context
classes. If SVCReq is explicitly defined by the application for a
specific request then it applies to all involved context classes.
Otherwise, for each atomic CReq, the default spatial validity value
(SVCi) applies. Note that similarly to requests, context responses
also have a spatial validity that controls their dissemination.

Definition 4. Temporal Validity of a Context Request (TVCReq)

It is the time period, measured from the moment the initial request
was issued, until the moment the request is not regarded valid.
This value is a measure for the context freshness. Alternatively
one can think of TVCReq as the time interval between two
retransmissions of CReq.

2.1.1 Situation-aware Computing
Situations can be regarded as higher-level descriptions for the
current activities and contextual status of nodes/users, and they
affect the actions that the applications should take.

Let S be the set of all situation classes (types). If we assume that
we are interested in situations regarding users, nodes, and the
environment, then S can be divided to three subsets, Su, Sn and Se,
respectively. Situations can be described through an ontology, too
(see Figure 2b), and for their classification specific rules apply.

Definition 5. Situation Classification Rule (SCR)

A rule that defines, either through necessary (or necessary and
sufficient) conditions, a situation of a user, a node, or the
environment. The general form of such rule is:

SCRi := S1^…^Sk^ (val1 op V1)^(val2 op V2)^ …^(valm op Vm) �
Si (SVSi, TVSi)

where i>k and � denotes that the conditions in the rule body are
necessary (≡ is used for necessary and sufficient conditions). SVSi
is the spatial validity of SCRi. Only Si that are subclasses of Se can
have spatial validity and in this paper we deal only with such type
of situations. TVSi is the temporal validity of SCRi.

Each condition in the rule’s body can be evaluated to one of the
following status values:

• Unknown: the context class of the condition is not in LCN

• True: the context class of the condition is in LCN and the
condition is satisfied by the current context value

• False: the context class of the condition is in LCN and the
condition is not satisfied by the current context value.

The conditions that are either true or false are called local

conditions while the conditions that participate in the rule’s
context request are called remote conditions. The conditions of a
rule SCRj with status unknown will eventually form a Context
Request CReqj which inherits the SVSj and TVSj values.

Finally, each SCR has a “trigger level”. This level is a value
indicating how closely to firing the rule is (i.e., the number of
satisfied local conditions divided by all local conditions). The
trigger level assumes the value 1 when all the local conditions are
satisfied and 0 when no local condition is satisfied. The usage of
the trigger level is described in Section 3.5.

As already stated, situations are used for determining the
application actions in a declarative way.

Definition 6. Action Rule1 (AR)

A rule that defines the actions that should be triggered if all the
conditions in its body are satisfied. For example, such actions
could be method invocations if procedural attachments are
supported by the rule language employed. The conditions involve
situations and, thus, indirectly context values. The general form of
such rule is:

ARi := S1^S2^…^Sm � SomeAction (SVARi)

where SVARi denotes its spatial validity.2

2.1.2 Example
The following example better explains the aforementioned
definitions. Let us assume that a node N1 has only a temperature
sensor and the action rule:

Fire � BroadcastAlert (100)

meaning that if fire is detected within a range of 100 space units
then the node should broadcast an alert. Let us further assume that
the situation Fire is defined through the SCR:

Temperature>80 ^ Humidity<10 � Fire (100, 10)

, where 100 (SVCReq) is the range within which humidity values
are regarded valid. The value 10 (TVCReq), defines how often
context requests for humidity values will be retransmitted to
nodes that have humidity sensors. Hence, N1, every 10 time units,
will issue a CReq of the form:

Humidity<10

and this request will reach only the nodes in the range of 100
space units. When a node with a humidity sensor satisfies the
condition of the CReq (e.g., humidity is 5 degrees) it will
broadcast a CRes:

Humidity=5

which will also reach the nodes within range of 100 space units.
Note that the terms Fire, Temperature and Humidity should be
defined in the ontologies of Figure 2.

1 We just deal with SCRs because ARs are just another abstraction layer.

However we mention them for completeness purposes.
2 Temporal Validity is not defined for action rules since it mainly

concerns lower level rules (i.e., SCR)

2.2 Communications and Other Assumptions
For the communication layer, the main assumption is that we do
not have any means of high-level networking protocols and
information exchange is performed through (some variant of) a
broadcasting scheme. The broadcasting is performed based on
short range communications (e.g., ZigBee, IEEE 1609 WAVE,
IEEE 802.11 ad hoc mode) and is not global. Several efficient
variants of broadcasting have been proposed in the literature such
as epidemic information dissemination [7], gossiping [8], etc.
Another assumption is that some special flags in packet headers,
indicating the types of messages used by the scheme (i.e., context
requests, context responses), can be set.

Finally, the proposed framework assumes an application
environment with the following characteristics:

• all nodes are mobile,

• there is no assumption as to how many nodes carry sensors
or other context detecting devices,

• all nodes are willing to collaborate so that their respective
context-aware applications are executed in an optimal way,

• each node can estimate its location (through some type of
location sensor, e.g., GPS),

3. FRAMEWORK ARCHITECTURE

3.1 Context Foraging Workflow
There are three roles that a node can assume:
1. Context Requestor (CR), if the node requests context values

from other nodes.
2. Context Relay (CRel), if a node does not have the sensors

required by a context request or is not interested in the
context response contents. CRels just forward messages that
they have not forwarded before.

3. Context Provider (CP), if it can sense and send to other
nodes some type of context.

In each node there is an instance of the context ontology and the
situation ontology along with the SCRs. Each application, upon
deployment, contributes its action rules to the knowledge base of
the node. If the Action Rules of some application contain
situations with remote conditions then the respective context
requests are created and disseminated. Once a CReq reaches a CP
then it is registered as an event filter in it. When an event
satisfying a filter is triggered by the CP sensor values, a CRes is
disseminated in the network.

The overall scheme a variant of a content-based publish/subscribe
scheme, adjusted appropriately for the nomadic computing
paradigm. Specifically, each publisher (CP) is also a broker, since
publish/subscribe systems for networks with high topology
change rate should store the event interests very close to the
information sources. Moreover, some type of subscription
covering (aggregation) is performed, extending that found in
content-based networking schemes (e.g., [13]).

3.2 Context Requestor Design
A CR can collect context values required by its knowledge base
(Action and Situation Classification Rules) and not provided by
its own capabilities. Context foraging adopts the following
principles:

• The context values received through Context Responses are
spatially valid.

• The context values are fresh, i.e., context values are received
as soon as they are generated, ensuring a good sensitivity in
detecting situation updates. No context-caching is used.

Moreover, the two non-functional, efficiency requirements
mentioned in Section 1 apply, too. Listing 1 presents the
algorithms implemented in the CR. The requestContext algorithm
can be executed periodically (for each SCR rule) or whenever
some rules are “close to fire” (see Section 3.5). The
responseHandler algorithm is executed whenever a new CRes is
received by the CR.

function requestContext

Input: SCR: an array of all SCRs

1: while true

2: for i=1 to SCR.length do

3: if SCR[i].hasRemoteConditions()

4: then sendRequest(SCR[i].remoteConditions);

5: end for

6: rescheduleRequest(SCR[i].remoteConditions, SCR[i].TV);

7: end while

function responseHandler

Input: CRes: the array that contains all conditions of the Context Request,
SuppClasses: the array of all context classes supported by the node

1: if isSpatiallyValid(CRes) then

2: if CRes.classes not in SuppClasses then
3: assert(CRes);
4: fireRules();
5: forward(CRes);

Listing 1. Request Formation and Response Handling

3.3 Context Provider Design
Each node that can assume a context provider role has an index
data structure used for two purposes: a) as a registry of all event
filters received through context requests, and b) as a mechanism
that matches events (new sensor values) with event filters
The main idea is that context requests will be registered (with
their respective timeouts) in this index. The sensor stream will be
also fed into this index so that sensor values that match some
filters generate events that are disseminated through the network.
Hence, this index will act like a message forwarding engine that is
typically found in content-based network routers [13]. Due to size
limitations we do not describe this event generation process,
which is rather straightforward. The only special point is that the
context responses are also assigned a Spatial Validity value which
is the maximum of the spatial validities included in the response
elements (so that all relevant requestors can be reached).
The structure of this index is depicted in Figure 3. In this index,
the arrays FILTERS and EQUALS are sorted. Specifically the
FILTERS array contains the context conditions (also called event
filters or subscriptions) received through incoming CReqs and is
sorted in descending order for the ‘<’ and ‘<=’ operators and in
ascending order for all other operators. Sorted arrays are used
because the readings in this index (new context values, generated
by sensors) are expected to considerably outnumber the updates
(new event subscriptions). The EQUALS array (also stores
contextual conditions) constitutes an optimization in order to
avoid unnecessary filters. For example, for the event
“contextClass[1] = 22”, we do not create an additional filter in the
FILTERS array of the ‘=’ operator since there is an overlap with

an existing filter (“contextClass[1] >20”). Finally, the timeout
values are used for deciding the expiration of the filters and the
SV values for setting the spatial validity parameter in the context
response. Listing 2, describes how this index is used during
request handling in CPs.

contextClass[1]

contextClass[N]

>

<

<=

……333020

……2:402:302:20

value

timeout

op: array

FILTERS: array

22

EQUALS: array

2:12

value timeout

……60120100 SV

10

SV

Figure 3. The index of event filters

function requestHandler

Input: CReq: the request object, SuppClasses: the array of all context
classes supported by the node

1: for i=1 to CReq.conditions.length do

2: begin

3: if isSpatiallyValid(CReq.conditions[i])

4: if CReq.conditions[i].contextClass in SuppClasses then

5: subscribeEvent(CReq.conditions[i]);

6: end;

7: sendRequest(CReq);

function subscribeEvent

Input: CReq: an atomic context request, index: the index of Figure 3.

1: if CReq.op not in index[CReq.contextClass].op then
2: newOp = index[CReq.contextClass].op.add(CReq.op);
3: newOp. FILTERS.add(CReq.value, CReq.timeout, CReq.SV);

4: else

5: filter = index[CReq.contextClass].op[CReq.op]. FILTERS;
6: filter.addFilter(CReq.value, CReq.timeout);

function addFilter

Input: CReq: an atomic context request, index: the index of Figure 3.

1: currentValue =
index[CReq.contextClass].op[CReq.op].FILTERS.getValue(1);

2: if CReq.op = ‘>’ and currentValue > CReq.value or

 CReq.op = ‘>=’ and currentValue >= CReq.value or

 CReq.op = ‘<’ and currentValue < CReq.value or

 CReq.op = ‘<=’ and currentValue <= CReq.value then

3: then this.addFirst(CReq.value, CReq.timeout, CReq.SV);

4: else if CReq.value in this.value then

5: this.rescheduleTimeout(CReq.value, CReq.timeout, CReq.SV);

6: else

7: this.add(CReq.value, CReq.timeout);

8: if CReq.op = ‘=’ and CReq.value >

 index[CReq.contextClass].op[‘<’].this.getValue(1) and CReq.value <

 index[CReq.contextClass].op[‘>’].this.getValue(1) then

9: index[CReq.contextClass].op[‘=’].filters.add(CReq.value,
 CReq.timeout, CReq.SV);

10: else

11: this.addEqual(CReq.value);

Listing 2. Request Handling in Context Providers

Since, in nomadic computing nodes relocate frequently, we do not
want to store all the event filters infinitely in the index since the
spatial validity of the respective events (i.e., context responses) is
affected by the nodes’ mobility (for both types of nodes, CR and
CP). For that purpose, we use timeouts for the filters and the
algorithm in Listing 3 handles their expiration. These timeouts are
scheduled in a typical job scheduler. What this algorithm does, is
to remove the expired filters from the index and the job scheduler
but also keep the index in a consistent state. Specifically, if there
is an EQUALS array linked to a FILTERS element, then it either
links it to another element or registers its elements as new filters
under the ‘=’ operator (the second case holds if the
“contextClass[1]>20” filter in Figure 3 expires). As shown in line
6, upon removal of a FILTERS element, its associated EQUALS
array, if any, is linked to the left element. This happens due to the
sorting of the FILTERS arrays.

Algorithm filterExpired

Input: expFilter: the expired filter, index: the index of Figure 3

1: if expFilter.op != ‘=’ and expFilter =

 index[expFilter.contextClass].op[expFilter.op].FILTERS.get(1) then

2: if expFilter.equal is not empty then

3: for all i in EQ do
4: index[expFilter.contextClass].op[‘=’].FILTERS.add(i.value,
i.timeout, i.SV);

5: else if expFilter.equal is not empty then

6: move(expFilter.equal); //move the equal array to the left filters item
7: FILTERS.remove(expFilter); //removes it from the filters array and the
scheduler

Listing 3. Expiration of event filters

3.4 Some special cases
Given the above algorithms, a low overhead event-driven
collaborative sensing scheme can be implemented. The
advantages are that no continuous polling, which is very resource
demanding is used, and useless event filters are removed by the
filter expiration mechanism. Moreover, this scheme copes well
with the following problematic cases:

A) The CR leaves the region after it has sent a CReq: In this case
the CP nodes transmit context responses just until the CR’s event
filters expire.

A.1) Even worse, some context responses to this CReq, which are
spatially invalid, reach the CR when it is far from its initial
position: Spatial validity is set for context responses (since we
assume all nodes know their location).

B) The CPs with registered event filters go away from the CR:
They transmit context responses to their new neighborhood just
until their timeouts expire. After all, the new neighbors may be
also interested in the context values included in these responses.

However, one possible case that may arise and if not handled may
affect the sensitivity of the system is the following:

A CR disseminates a CReq for a context class C with a long time
validity (late expiration). We remind that long time validity is
desirable because it reduces the traffic and the utilization of other
node resources used during CReq dissemination. We assume that
no neighbor of the CR is a CP for this context class. Then, just
after the CReq dissemination, a new node appears that can fulfill

this request. In this case, the new node will be able to sync with
the other nodes only after the expiration of the previous request
and the retransmission of a new one.

To deal with this case, each node could possibly retransmit the
CReqs received by others or generated by itself to all of its one-
hop neighbors upon change in its one-hop neighborhood
topology. However, we did not include this functionality in the
scheme since some first simulations showed that it introduces
considerable communication overhead.

3.5 Lazy Context Requesting
A last mechanism proposed for the Context Foraging architecture
is the “Lazy Context Requesting” and it refers to how and when
CReqs should be generated. Specifically, a situation may never
happen or may happen only very seldom. In such case, exploiting
the context foraging scheme described in the previous section is
not probably the most efficient solution. For example, let us
assume the following situation rule:

(Temperature>80)^(Humidity<20)^(Smoke=true) � Fire

and that the node can provide Humidity and Smoke values (these
are the local conditions of the rule). Obviously, it is a waste of
resources to initiate the context foraging process when
Smoke=false and Humidity>=20 since the fire event will never be
detected even if Temperature values, received from neighbor
nodes, are higher than 80 degrees.

In order to optimize the context foraging process the CReqs (i.e.,
event subscriptions) are not sent in a static but in a context-aware
way. The main concept is that a node sends CReqs derived from a
situation classification rule to the network only when its own
context values satisfy the local conditions of the rule. Hence, there
is a meta-rule engine that monitors the trigger level of the SCRs.
Once a rule’s trigger level passes a threshold, then the
corresponding CReq is broadcast (i.e., the sendRequest function is
called). The threshold involved in this mechanism may depend on
the criticality of the rule (i.e., critical rules have lower thresholds)
or other background knowledge we have for the rule so that
premature context requesting can be performed, if necessary.

4. PERFORMANCE EVALUATION
In order to assess the performance of the proposed scheme we ran
several simulations, where we compared it to an alternative
scheme that satisfies many of the problem requirements. This
scheme (called Context Polling, or CPol for brevity) is simpler
and with some inherent limitations but, in our opinion, seems to
be one of the most promising alternatives for the specific domain.

In CPol, each Context Requestor periodically sends CReqs to
other nodes. If the Context Providers, satisfy some (parts of)
requests, they immediately send their context responses and
discard the CReq. Hence, the scheme is totally stateless, which is
also one of its key advantages. However, the main drawback is
that as the period increases, the CRs cannot detect context
changes of interest. On the other hand, as will be shown in the
following section, if the period is set to one time unit then the
communication overhead is too high.

4.1 Simulation Setup
In order to assess the performance of the context foraging scheme
we ran several simulation scenarios, using the following metrics:

1) Number of exchanged messages (#Msg). It involves all
CReq, CRes and their corresponding forwards.

2) Average Situation Detection Ratio (ASDR). The average
SDR over all Context Requestors. Situation Detection Ratio
for a CR i is defined as:

A
SDRi

B

=

where A: Number of SCRs fired by node i, B: Number of SCRs
that should be ideally fired by node i. The parameter (counter) B
is increased by one each time a combination of sensor values that
would trigger a SCR of the node i was observed within the area
where the rule is spatially valid.
Other typical metrics in publish/subscribe systems such as
delivery latency are not useful in our case, because all events are
local to the requesting node. Hence, the expected delay of a
context response is known a priori and it depends on the spatial
validity assigned to the corresponding request.

The first part of the simulation compares the performance of the
two schemes, CFor (for Context Foraging) and CPol. The second
part tries to evaluate the use of the lazy context requesting
mechanism. Hence, in Part B we ran the set of experiments B1
and B4 that are the same as the A1 and A2 but with lazy context

requesting enabled.

Table 1 summarizes the default setup parameters (for both parts)
while Table 2 presents the parameters for the specific
experiments.

Table 1. Simulation Setup – Default parameters

of nodes 100

Simulation time 200*

Mobility model Random waypoint (see [3]):
Maximum pause time: 20
Min speed: 0

of SCR per CR 2

SV of SCRs 110

Communication range 50

Environment dimensions 500x500

Trigger level for Lazy requesting 0.66 (i.e., 2 out of 3 conditions)

of avg one-hop neighbors ~3
*All times are expressed in time units

The following SCRs were assigned to the CRs for Part A:

Rule # of CRs

SCR1: (Temperature>80) ^ (Humidity <20) � Event 1
SCR2: (GasA>40) ^ (GasB>50) � Event 2

1/3 of CRs

SCR3: (Humidity <20) ^ (Smoke=true) � Event 3
SCR4: (GasB>50) ^ (Smoke=true) � Event 4

1/3 of CRs

SCR5: (Temperature>80) ^ (Smoke=true) � Event 5
SCR6: (GasA>50) ^ (Smoke=true) � Event 6

1/3 of CRs

This division of the CRs to three sets, with rules that do not fully
overlap in terms of context classes, was made so that not all nodes
produce the same context requests. If that was the case, the
requests would result in being “global” and would bias the
simulation results in scenarios with mobile nodes.
The two rules in Part B that were shared by all CRs are:
SCR7: (Temperature>80) ^ (Humidity <20) ^ (Smoke=true) � Event 1
SCR8: (GasA>40) ^ (GasB>50) ^ (Smoke=true) � Event 2

The CRs in Part A are not CPs (i.e., do not have any sensors). In
Part B, the CRs have Humidity, Smoke and GasB sensors. In both
parts, the CPs (excluding the CRs in Part B) have one sensor each
and each context class is provided by an equal number of CPs, on
average. The sensor values were generated once and used in all
runs of an experiment. The sensor values are random and the
difference of two subsequent values follows a Normal distribution
N(0,1).

Table 2. Simulation Setup – Experiments

Part A

Experiment A1

Mobility model Max speed: 0, 1, 2, 4, 10, 20

of CR 40

of CP 40

Experiment A2

Mobility model Max speed: 2

of CR 40

of CP 40

SV of SCRs 30, 50, 70, 90, 110

Part B

Experiment B1 (same as A1)

Experiment B2 (same as A2)

4.2 Simulation Results
A first and rather trivial observation is that if we set the time
validity of all SCRs in the Context Foraging scheme equal to one
time unit, the scheme becomes identical to CPol with period one
time unit, in terms of ASDR. However, the CFor scheme transmits
much fewer messages due to the response aggregation that is
performed through the index.

Figures 4, 5 summarize the results for experiment A1. Two
variants of Context Foraging (CFor) and two variants of Context
Polling (CPol) are compared (the numbers after the scheme names
denote the temporal validity of the context requests). All schemes
except for CPol2 have similar event detection capability (ASDR).
However, the CFor schemes exchange considerably fewer
messages. Moreover, the message overhead of CPol increases
exponentially, whereas that of CFor linearly (Figures 4 and 6).

Increasing the TV for CFor does not affect significantly the
ASDR values and provides substantial message reduction.
However, CPol is more sensitive to increases of TV (Figures 4
and 5).

Increasing the mobility of the nodes has a big impact on the
messages exchanged in CPol, a slight impact on CFor and it does
not affect the situation detection capability of the nodes. A similar
behavior is observed when increasing the spatial validity of the
rules. CFor is much more robust against such changes and does
not degrade the node’s ASDR.

When the Lazy requesting mechanism is enabled, the results are
quite analogous. However, the volume of exchanged messages is
about 3-10 times lower compared to the standard scheme. We
should note at this point that we also used the idea of lazy
requesting for the CPol scheme in Part B experiments.

Another interesting point is that if we use the standard ASDR

0

100000

200000

300000

400000

500000

600000

700000

0 1 2 4 10 20
max speed

#
M

s
g

CFor10 CFor5 CPol1 CPol2

Figure 4. A1: Number of exchanged messages as a function of

the maximum speed

0.00

0.20

0.40

0.60

0.80

1.00

0 1 2 4 10 20
max speed

A
S

D
R

CFor10 CFor5 CPol1 CPol2

Figure 5. A1: ASDR as a function of the maximum speed

0

200000

400000

600000

800000

1000000

1200000

60 90 120 150 180Spatial Validity

#
M

s
g

CFor10 CPol1 CPol2

Figure 6. A2: Number of exchanged messages as a function of

the spatial validity of the requests

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

60 90 120 150 180

Spatial Validity

A
S

D
R

CFor10 CPol1 CPol2

Figure 7. A2: ASDR as a function of the spatial validity of the

requests

metric for Part B experiments, its values fall to ~20% (Figures 9
and 11). This is something expected, because the nodes rely more
on their own sensors for detecting situation changes than on other
Context Providers. Does this mean that the nodes miss some
events? The answer is “No”. The nodes have the same sensitivity
to events but with much less message exchange and without
exhaustion of their resources (due to unnecessary
communications). In order to better demonstrate this we also
provide in Figures 9 and 11 the results for ASDR’ (the upper lines
in the figures). ASDR’ has the same nominator as ASDR but the

0

10000

20000

30000

40000

50000

60000

70000

80000

0 1 2 4 10 20max speed

#
M

s
g

CPol1 CForL5 CForL10 CForL20

Figure 8. B1: Number of exchanged messages as a function of

the maximum speed

0

0.2

0.4

0.6

0.8

1

0 1 2 4 10 20
max speed

A
S

D
R

CPol1 CForL5 CForL10 CForL20

CPol1' CForL5' CForL10' CForL20'

Figure 9. B1: ASDR as a function of the maximum speed

0

20000

40000

60000

80000

100000

120000

140000

60 90 120 150 180Spatial Validity

#
M

s
g

CPol1 CFor5 CFor10 CFor20

Figure 10. B2: Number of exchanged messages as a function of

the spatial validity of the requests

0

0.2

0.4

0.6

0.8

1

60 90 120 150 180
Spatial Validity

A
S

D
R

CPol1 CFor5 CFor10 CFor20

CPol1' CFor5' CFor10' CFor20'

Figure 11. B2: ASDR as a function of the spatial validity of the

requests

denominator takes into account only combinations where 2 out of
the 3 conditions are satisfied by the requesting node itself. One
can see that these values are approximately the same as those in
Figures 5 and 7.
In fact, if the sensor values are not random, the ASDR’ is
expected to improve more, because real world situations do not
tend to disappear rapidly, before even very close nodes can detect
them. Hence, our next steps will be to replace the synthetic sensor
datasets with real traces.

5. RELATED WORK
To our knowledge the application of the publish/subscribe
paradigm to such dynamic environments, where networking
protocols cannot be used, is an area with little results so far.
Nevertheless, the mobile publish/subscribe model in general, has
been an active research area during the last years. Several works
have studied the special issues that arise when publishers or
subscribers are mobile [9][10]. However, most of them assume
that there is a MANET which implements some appropriate
routing protocols or they employ routing-like structures for
performing multicasting of the event notifications [12].

The authors in [11] do not make most of the aforementioned
assumptions and in that sense their setup is similar to ours.
However, their work targets other application domains where
event topics are more structured and, to some degree, predefined.
In our scheme, the context requests define the topics of interest
and can be arbitrary, depending on the current needs of the nodes.
Another difference is the way the temporal validity is defined.
Context foraging assigns a validity value to requests, filters and
responses, while in the approach of [11] time validity is assigned
to the generated events. Moreover, it is worth mentioning that the
Context Foraging scheme does not build any type of topology
tables or other structures. In the light of such inherent differences,
further comparison with the above schemes seems difficult, if
meaningful at all.

6. CONCLUSION
In this paper we presented a new architecture for collaborative
sensing and nomadic context-aware applications. The proposed
scheme is based on principles of publish/subscribe systems
applied on fully mobile nodes carrying sensors and/or requiring
sensor values for reasoning about their context. An evaluation and
comparison to an alternative scheme clearly indicated the benefits
of the proposed scheme with regard to the number of messages
exchanged. Specifically, in all scenarios tested, the disseminated
messages are much less than those of the alternative (polling-
based) scheme, with insignificant reduction in the situation
detection capability of the nodes.

Despite this encouraging evaluation, several topics are still open
and deserve further investigation. One of them is how can the
scheme protect itself from malicious nodes that frequently register
events just to flood the network. Moreover, some other features
could be studied. One of them is that the time interval (time
validity) between request retransmissions (Listing 1,
requestContext algorithm, line 6) could depend on the node
mobility or, equivalently, the neighbourhood change rate or the
criticality of the rule (if it can be somehow defined). Another one
is the caching of the context responses for some time units, either
in the relay nodes or the CRs.

Finally, we should mention that this work is part of the IPAC
(Integrated Platform for Autonomic Computing) European FP7
project [14]. IPAC aims at delivering a middleware and service
creation environment for developing embedded, intelligent,
collaborative, context-aware services in mobile nodes. IPAC
relies on short-range communications for the ad hoc realization of
dialogs among collaborating nodes.

7. ACKNOWLEDGMENTS
This work was partially supported by the European Commission
through the FP7 ICT Programme in the scope of the project IPAC
(Integrated Platform for Autonomic Computing), contract FP7-
ICT-224395.

8. REFERENCES
[1] Kleinrock, L. 1995. Nomadic computing—an opportunity.

SIGCOMM Comput. Commun. Rev. 25, 1 (Jan. 1995), 36-40.
[2] Balan, R. K. and Satyanarayanan, M. “The Case for Cyber

Foraging”, Proc. 10th ACM SIGOPS European Workshop,
ACM Press, 2002, 87-92

[3] Mousavi, S. M. et al. “MobiSim : A Framework for
Simulation of Mobility Models in Mobile Ad-Hoc
Networks”, 3rd IEEE International Conference on Wireless

and Mobile Computing, Networking and Communications

(IEEE WiMob), New York, USA, 2007.
[4] Anagnostopoulos, C. and Hadjiefthymiades, S. Enhancing

Situation Aware Systems through Imprecise Reasoning,
IEEE Transactions on Mobile Computing, vol. 7, no. 10,
2008, 1153-1168

[5] Wang, X.H., et al. Ontology based context modeling and
reasoning using OWL, In Proc. of the Second IEEE Annual

Conference on Pervasive Computing and Communications

Workshops, 14-17 March 2004, 18-22
[6] Chen, H. and Finin, T. An Ontology for a Context Aware

Pervasive Computing Environment, IJCAI workshop on

ontologies and distributed systems, Acapulco MX, 2003.
[7] Eugster, P.T. et al. Epidemic information dissemination in

distributed systems, Computer , vol.37, no.5, 2004, 60-67
[8] Costa, P., et al. When cars start gossiping. In Proceedings of

the 6th Workshop on Middleware For Network Eccentric

and Mobile Applications (Glasgow, Scotland, April 01 - 01,
2008). MiNEMA '08. ACM, New York, NY, 1-4.

[9] Rezende, C. G., Rocha, B. P., and Loureiro, A. A. 2008.
Publish/subscribe architecture for mobile ad hoc networks. In
Proceedings of the 2008 ACM Symposium on Applied

Computing (Fortaleza, Ceara, Brazil, March 16 - 20, 2008).
SAC '08. ACM, New York, NY, 1913-1917

[10] Huang, Y. and Garcia-Molina, H. Publish/Subscribe Tree
Construction in Wireless Ad-Hoc Networks. MDM, 2003.

[11] Baehni, S., Chhabra, C. S., Guerraoui, R. Frugal. Event
Dissemination in a Mobile Environment. ACM/IFIP/USENIX

6th International Middleware Conference, 2005, 205-224

[12] Muthusamy, V., Petrovic, M., Gao, D., Jacobsen, H.-A.,
Publisher mobility in distributed publish/subscribe systems,
25th IEEE International Conference on Distributed

Computing Systems Workshops, 2005. 2005, 421-427
[13] Carzaniga, A. and Wolf, A. L. Forwarding in a content-based

network. In Proceedings of the 2003 Conference on

Applications, Technologies, Architectures, and Protocols

For Computer Communications (Karlsruhe, Germany,
August 25 - 29, 2003). SIGCOMM '03. ACM, New York,
NY, 163-174.

[14] Tsetsos et al. D1.1 IPAC Project Presentation, Public
deliverable available at http://ipac.di.uoa.gr, June 2008

