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Abstract

Fires are a common, disastrous phenomenon that con-
stitutes a serious threat. Thus, early detection is of great
importance as the consequences of a fire are catastrophic.
Towards this direction the SCIER! project envisages the
deployment of Wireless Sensor Networks at the “ Urban-
Rural-Interface” (URI) and uses sensor fusion techniques
to enhance the performance of the early fire detection and
fire location estimation processes.

1 Introduction

Fires are a common, disastrous phenomenon that con-
stitutes a serious threat. Because of their speed of spread
and intensity they often lead to property damages, personal
injuries and loss of human lives. Thus, early detection is
of great importance as the consegquences of a fire (indoor
or outdoor) are catastrophic. Fires that occur in wildland
(forests, etc.) could also affect inhabited areas. These areas
are widely known as “Urban-Rura-Interface” (URI), i.e.,
zones where forests and rural lands interface with homes,
other buildings and infrastructures. Inthe URI, firesare fre-
guent dueto the special nature of these zones; afire could be
the result either of human on one side of the zone, or could
arrive from the other side (wildland). In such cases early
detection leads to an efficient control of the fire and makes
feasibletheimmediate evacuation of theentire areaif thisis
considered necessary. Great technology effort has been in-
vested on the design of systems for fire detection and moni-
toring. Most of them make use of temperature and humidity
sensors, smoke detectors, infrared cameras, etc. In addition,
aerial or satelliteimages are frequently used for outdoor fire
detection and monitoring. In [3] a fire detection system is
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proposed based on multi-sensor technology and neural net-
works (NNs). The sensed data include environmental tem-
perature, smoke density and CO density. The use of NNs
for automatic detection of smoke is also proposed in [10].
A system for wildfire monitoring using a wireless sensor
network (WSN) that collects temperature relative humidity
and barometric pressure is described in [4]. The wireless
networked nodes communicate with a base station that col-
lects the sensed data. Satellite based monitoring [11] is an-
other method to detect forest fires but the scan period and
the low resolution of satellite images make this method in-
capable for real-time detection. The authorsin [2] and [7]
propose systems based on infrared (IR) technology for the
detection of fires.

The SCIER project will design, develop, and demon-
strate an integrated system of sensors, networking and com-
puting infrastructure for detecting, monitoring and predict-
ing natural hazards (fires, etc.) at the URI. The overall goal
of the SCIER system is to make the neglected URI zone
safer against any type of natural hazards or accidents using
wireless sensor network technologies, fusion techniques to
assess dangerous situations, and predictive models to esti-
mate the evolution of the hazardous phenomena. The fu-
sion techniques used in SCIER are implemented in a spe-
cial component of the SCIER system: the Local Alerting
Control Unit (LACU). LACU controls a Wireless Sensor
Network (WSN) and is responsible for the early detection
of potential fires, the fire location estimation and the sub-
sequent alerting functions. For the detection phase, sen-
sor readings are evaluated and probabilities are assigned on
each situation. If the probability of fire event exceeds a pre-
determined threshold, the system shifts to fire location esti-
mation phase. In this phase the centre of the fire outbreak
and the radius of the fire spread are determined.

The rest of the paper is organized as follows: in Section
2 the SCIER architecture is described and the requirements
concerning the topology of the wireless sensors controlled
by LACU are defined. Section 3 discusses fire detection
and fire location estimation based on sensor readings (tem-
perature) and sensor location (GPS coordinates). Finally in



Section 4 conclusions are presented and open research is-
sues are discussed.

2 System Architecture - Requirements

The SCIER system constitutes an integrated platform of
sensors and computing infrastructure capable of delivering
valuable real time information regarding natural hazards at
the “Urban-Rural-Interface” (Fig. 1). As an environmen-
tal hazard approaches, or has occurred in the URI region,
SCIER will provide the capabilities of both monitoring and
predicting its evolution. Sensors spread in the region will
monitor environmental parameters (e.g., temperature) and
feed with already fused data the predictive models in the
computing infrastructure. SCIER system is composed by
three entities: the Sensing Subsystem, the Computing Sub-
system and the Localized Alerting Subsystem.
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Figure 1. SCIER system at the URI.
2.1 The Sensing Subsystem

In URI two kind of sensors are deployed: Citizen Owned
Sensors (COS), installed by land/home ownersin fixed and
registered locations in private areas, and Publicly Owned
Sensors (POS), installed by state authorities in fixed and
known locations in public areas. In SCIER system the use
of temperature, humidity and air direction/speed sensorsis
adopted.

2.2 The Computing Subsystem

This subsystem is based on GIS (e.g., region, URI)
where the fused sensor information is fed. Multiple math-
ematical environmental models of different time scales are
used in order to establish a highly accurate tracking of the
hazardous phenomenon. The output of the models will, in
certain cases, re-feed the sensor infrastructure, which will
be capable of reconfiguring itself to adapt to the dynamics
of the observed phenomenon and allow its best monitoring.
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Figure 2. LACU architecture.

2.3 The Localized Alerting Subsystem
(LAS)

LAS includes the Loca Alerting Control Unit (LACU)
which controls an area of deployed sensors and performs
fusion algorithmsfor fire detection and fire location estima-
tion. In SCIER, two types of LACUs are identified (Fig.
1):

e Public LACU (P-LACU). This type of LACU is in-
stalled and operated by public authorities and controls
awireless network of Public Owned Sensors.

¢ PRivate LACU (R-LACU). This type of LACU con-
trols Citizen Owned Sensors and is installed by indi-
vidualsin order to protect their private properties.

LACU is a device which resides between the Computing
Subsystem and the Sensing Subsystem as depicted in Fig.
2. The basic components that comprise LACU and their
role are described in the following paragraphs.

e Communication proxy, which is responsible for the
communication between LACU and Computing Sub-
system.

e Sensor proxy, which receivesand stores readingstrans-
mitted by the sensors deployed in the monitored area.

e Fusion component, which assesses sensor data and de-
terminesif afire outbreak occursin the area. Further-
more, it estimates the exact location of thefire.

e Alerting component, which is triggered by Fusion
Component and provides notifications to the Comput-
ing Subsystem and to the users (in case of an R-LACU)
when an emergency situation occurs (e.g fire).

e Data Base, which stores historical data, the identifi-
cation of each sensor and its location as well as the
readings arriving from the Sensor proxy.

The topology of the WSN controlled by a LACU (public or
private) plays an important role in the fusion process. The



density of sensors dependson the areathat is monitored and
the desired accuracy of fire location estimation. For thefire
detection process an issue arises regarding the false aarm
rate of the system. A false alarm is the situation when the
detection algorithm decides that there is afire and actually
there is not. It is clear that if we need a reasonable num-
ber of false alarms then the detection latency of the system
increases (i.e. it is possible to not detect afire). The false
alarm rate is parameterized and it depends on the user re-
guirements (in case of an R-LACU), on season of the year
(e.g. summer) and on the risk factor of the monitored area.

3 Fire detection and Fire Location Estima-
tion

The two problems of fire detection and fire location es-
timation are treated separately. Temperature sensors, scat-
tered at the LACU area, continuously monitor the environ-
ment for abrupt temperature changes. Upon afire event de-
tection, the sensors continue to send their readings at the
LACU where afire location estimation process follows.

3.1 Fire detection

Several sequentia detection techniques have been pro-
posed in the literature including Bayesian formulations [8]
and the CUSUM procedure[6]. In this paper we follow a
simple approach formulating detection as a binary hypoth-
esis problem and using the Maximum Likelihood (ML) cri-
terion to decide upon the two events: No Fire (Hypothesis
0) and Fire (Hypothesis 1). That is,

- — ) 1

J =ag max p; (z) )
where z is the set of measurements and p;(z) is the p.d-f.
of the measurements under hypothesis j, We assume that
p;(z) follows a Gaussian distribution

pj(z) ~ N(mj, %)

and we attempt to model the parametersm ; and X

Let us consider K sensors placed ad hoc in the LACU
area, as shown in Fig. 3, and let ; denote the radius of
a disk with center the sensor j. Assuming disks of equal
radius (R; = r), we can find the minimum value of r, such
that afull coverage of the LACU areais obtained, that is

R =minr, stc U;rC/l

where L is the LACU area. This calculation is possible
since the position of the sensorsis known beforehand at the
LACU. Thevalueof R is critical regarding the redundancy
of the measurements and the detection latency. In the ab-
sence of afire event the measurements of sensor j are mod-
eled as

zZj =8 +n; 2
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Figure 3. Temperature sensors in the LACU
area.

where n; is the sensor measurement noise, assumed to be
Gaussian with zero mean and variance o2 which is pro-
vided by the sensor manufacturer. Next we assume that s ;
is Gaussian with mean p(h) and variance o2, that is

sj ~ N(u(h),07) ©)

The mean p(h) depends on the hour of the date and the
month of the year and can be estimated from statistical data
(stored in the database of LACU), empirical models, fore-
casting, or even the sensors themselves. Thus, u(h) can be
obtained by aweighted average of all aforementioned esti-
mation techniques, such as

p(h) = wipf(h) + wop" (h) + wsp? (h) + wap™ (h)
Zwizl, Wy > W3 > Wy > W1
i

where the superscripts e, h, f and m denote empirical, his-
torical, forecasting and measured estimates respectively.
For example, Walters' moddl ([9]) provides the “average
unit curve’ given by

X.(h) = 0.463sin(B + 232°38) + 0.121 sin(2B + 55°21')

+0.031sin(3B + 73°19')

where X, (h) isthe unit ordinate at time k (Local Apparent
Time, LAT), B is angular measure of the time of day, h
(LAT),0 < B < 360°, B = 15h. Using thisformulaalong

with

pe(h) — Ty,
Tmax - Tmin
we can estimate the screen temperature p€(h) at time h.
Tinax is the maximum temperature, T,;, iS the minimum
temperature of the day and T,,, is the mean of the 24 hourly
temperatures. For these parameters we can use statistical
data or the previous day values. For example if T'q0 =
35C°, Tynin = 12C° and T, = 20C° we obtain the daily
variations of temperature of Fig. 4, which shows that tem-
perature is higher at 2:00-3:00 pm. For the estimation of
1™ (h) by the sensors themselves, we drop the D highest

X, (h) =
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Figure 4. Empirical estimation of u(h)

and lowest temperature measurements out of the K avail-
able and we estimate ™ (h) by

1 K—-D
u™(h) = 2D > g
j=D+1
where Z; are the ordered (in increasing value) temperature
measurements. This averaging can be considered asasim-
ple data fusion process.

The parameter o, in (3), controls the variations (i.e.
clouds, rainy day) from the mean value p(h). Next sup-
pose that we have K measurements {z1, zo, ..., zx } from
different nodes availableto us. Consider the K -dimensional

vector

z = [217z27"'7ZK]T

Under Hypothesis O (no fire event) this vector is Gaussian

distributed with mean mg = [u(h), . . ., u(h)]* and covari-
ance matrix X. The covariance matrix has the form

2 2 2 2
oy +oy P120 P1KO
2 2 2 2
pP2104 o5 + 0y P2KOg
Yo = . .
2 2 2 2
PK10g PK20 o5 +oy

It should be noted that in the absence of fire the sensor mea-
surements are highly correlated especialy for the nearby
sensors. Thet is the values p;; should be closeto 1. We can
associate correlation coefficients based on the distance of
two sensors, or even estimate the matrix X from the sensor
measuements through the formula

. 1
$o=—= (2, —mg)(z, —mgy)"

Next we model the mean and the variance of the Gaussian
distribution of the measurements given Hypothesis 1 (Fire
event). In this case the measurements of sensor j take the
form

zj = 8j +qj +nj 4

where s; and n; have been defined in the no-fire case, and
the random variable ¢ ; measures the excess temperature due
to fire. This variable is modeled as Gaussian with mean
tq(x) and variance o2, that is

aj ~ N (pq(z),07) ()

It should be noted that the mean 14(z) is afunction of the
distance of the sensor from the fire front. If heat radiation
is the main phenomenon, then only the sensors that are in
the vicinity of the fire event will detect fire. In view of this
matter we consider a heat radiation model of the form

AH
(1 +z)7

Hq(T) = (6)
where A H is the excess temperature at the fire location, x
is the distance of the sensor from the fire front and a an
exponent which can be determined through physical laws
and/or simulation. To this end we consider afire model de-
scribed by the following system of partial differential equa-
tionswhich is derived from the conservation of energy, bal-
ance of fuel supply and fuel reactionrate [1][5].

()

T
‘fi—t = V.- (kVT)+v VT + AFe~B/(T=Ta) _ (T —T,)
W= Cppe /T s,

where T' and F' denote temperature and fuel mass fraction
respectively, with theinitial conditions F'(to) = 1, T'(to) =
To. Thediffusionterm V - (kVT') models short-range heat
transfer by radiation, v - V1" models heat convected by the
wind, C(T'—T,) istheheat |ost to the atmosphere (7', isthe
ambient temperature), C' Fe—B/(T—T2) js the rate of fuel
disappearance due to burning, whereas AFe ~B/(T-T2) js
the rate of heat generation due to burning. Fig. 5, shows
an example of the propagation combustion wave and fuel
supply mass fraction under no wind conditions (v = 0) and
k=21360 x 10 'm?s 'K 3, A =1.8793 x 103Ks !,
B = 5.5849 x 102K, C = 9.0905 x 107257, Cp =
1.6250s~1, T, = 300K and T, = 800K . Thevaluesof A
and Cr are an order of magnitude greater than those used
in[5] thusresulting in an extremely fast fire spread model.

Fig. 6 shows the temperature profile after 30 seconds
from fire ignition at 7, = 0 for the parameters of the fire
model of Fig. 5. Asit is observed the fire front exhibits a
steep fall from 1000K, at position +12.5m, downto 330K,
at £15.5m. That is, the temperature sensors will increase
their readings by 30C° if the fire front is 3m away. For
the extreme fire spread model considered, this distance will
be covered in about 5s which is enough for the sensor to
transmit several measurements before being burnt. For this
fire spread model we can estimate the exponent a in (6) to
be equal to 2.3.
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Since each sensor monitors an area of radius R, the dis-
tance z from thefire ignition point to the sensor isarandom

variable with pdf
2x
fx(z) = R2

Therefore, in view of equations (5), (6) we obtain

: AH \?* _ .
fQ(qj):/O \/%U P {_ (qj - m) /205} %dm

A simplification is obtained if we substitute 114 (z) in (5) by
its mean value

R
b= [ )@
(L+RE (14 R0 1
2—a B 1-a (1-a)(2—-a)

Under these conditions z; in (4) is Gaussian distributed with
mean 11(h) + 1, and varianceo? + o5 + o7,. Dueto thefact

that the number of sensorsthat detect fire varies (depending
on fire spread and spotting), the estimation of the joint dis-
tribution of the measurement vector z = [z, 22, . . . ,zK]T
is very complicated. Therefore, we resort to a subopti-
mal decision-fusion classifier where al measurements are
treated as independent. For each sensor a decision is made
for the existence of firein its control territory using the ML
criterion and the distributions of z; when it takes the form
in (2) and (4) respectively. ROC curves for different values
of R are provided in Fig. 7. Given adesirable false alarm

1 [——

Positive detection
A e e A T o e

OO 0.1 02 03 04 05 06 07 08 09 1

False Alarm

Figure 7. ROC curves (u(h) = 300K, o5 = 3,
o, =0.5,0,=1,a=23, AH = 700K).

rate and knowing the radius R for each node a threshold
can be set to decide for afire event in its territory. The de-
tection probabilities are assessed at the LACU for the final
decision fusion. This scheme enables LACU to make deci-
sions no matter how many fire spots exist in its area. More-
over, LACU does not have to recalculate the likelihood of
the vector z if some of the sensors is known to be burnt or
malfunctioning.

3.2 Fire location estimation

Assuming a homogeneous fuel terrain and no wind con-
ditions the spread of fire will be circular. Moreover, if the
WSN is sparse and the fire starts close to a sensor S; then,
due to the sharp leading edge of fire temperature profile,
only this sensor will notice atemperature increase. Thus, at
thistimeinstant ¢y, thefirefront isknown at the LACU to be
located in asmall disk around sensor .S;. Asthefire spreads,
another sensor S; will sense the temperature increase at a
latter time ;. Needless to say that sensor S; may be burnt
by this time, but its measurements at time ¢, have been
timestamped and stored at the LACU. A typical situation
isdepictedin Fig. 8 in case that the fire started in the con-
vex hull of the sensors. Knowing the characteristics of the
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combustion wave, i.e. speed of propagationv ¢, LACU isin
position to estimate the distance AB as d12 — vy (t1 — o).
Thereforethefireignition point lies on theline normal to the
midpoint of AB. A third sensor reading is needed to com-
plete the triangularization process and find the fire starting
point. Moreover, LACU is able to produce contours of fire
probabilities and zones of burnt sensors which can be used
to get an estimate of the fire front and the ignition point re-
spectively. For example, if sensor nodes S, Ss, ..., Sy, are
burnt at time instants t1,to, ..., L, (t1 < ty < -+ < t,,)
the fire starting point is esimated via

('Z'S7ys) = sz(mz;yz)a sz =1
i=1 i

wheretheweightsw; arelarger for these nodesburnt earlier.
On the other hand knowing the fire front at various time
instants based on increased sensor measurements helps to
estimate the fire spread speed and direction. Neighboring
LACUs can be benefit from these estimates increasing the
sampling rate of their sensors and their awareness status.

4 Conclusions and Future Work

In this paper we presented the functionality of the Lo-
cal Alerting Control Unit (LACU) component, as a part of
the overall SCIER architecture, regarding the early detec-
tion of potential fires and the fire location estimation pro-
cess. We propose a method for fire detection on an area
covered by temperature sensors. Sensor readings are pro-
cessed using the Maximum Likelihood (ML) criterion to
decide upon the two events (Fire and No Fire). Moreover,
the fire location estimation method that is proposed helps
determining the fire ignition point and the fire front. Such
information is obtained by fusing multiple sensor readings
and knowing the location of each sensor. Knowledge of
the fire front helps in adapting the data acquisition process

(e.g. increase sampling rate) and in alerting neighboring
LACUs that may be affected by the fire. Currently, open
research issues are investigated in the context of LACU and
especialy in the design and implementation of the fusion
component. Besides temperature, there are also other types
of sensors that can be deployed in the area and contribute
to the fusion process. Humidity sensors offer an alternative
way for checking and evaluating the air temperature mea-
surements; in general air humidity declines as air tempera-
ture arises. Modelling this relationship we will be capable
to confirm temperature readings, thus eliminating the prob-
ability of taking into account the data sent from a defective
sensor. Furthermore, the speed and direction of the wind
that flows in the monitored area and the non-homogeneous
terrain affects the spread model of the fire. Incorporating
such information, the fire model s become morerealistic and
the fire detection and fire location estimation process more
accurate.
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