
Semantic Location Based Services for Smart Spaces 

 
Kostas Kolomvatsos, Vassilis Papataxiarhis, Vassileios Tsetsos 

 

Pervasive Computing Research Group, Communication Networks Laboratory, 

Department of Informatics & Telecommunications, University of Athens, 

Panepistimiopolis, Ilissia 15784, Greece. 

{kostasks, vpap, b.tsetsos}@di.uoa.gr   

 
Abstract. Enhancing the physical environment of users with IT and 

communication elements is one of the main objectives of the pervasive 

computing paradigm. The so-called “smart spaces”, which are typical pervasive 

computing environments, combine computing infrastructure with intelligent 

and context-aware services in order to advance the users’ computing 

experience. In this paper we describe the basic metadata-related infrastructure 

that is required for delivering semantics-aware location-based services in smart 

spaces. This infrastructure involves geometric and ontological spatial 

representation as well as graph- and knowledge-based navigation algorithms.  
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1. Introduction 

Nowadays, one can observe an integration of the technology with the environment, 

giving the opportunity to people to utilize it at every time and any place. This is the 

core idea in pervasive computing [3] and it deals with the distribution of computing 

devices, such as wearable computers, sensors and other computational elements, in 

the physical world. Through this highly distributed infrastructure, users are able to 

gain access to various information sources and services. This way, the physical 

environment is transformed to a “smart space”. Among the main applications for 

“smart spaces” are the Location Based Services (LBS). LBSs are information 

services, usually accessible through mobile devices, that correlate spatial and non-

spatial data in order to enable location-aware content delivery [1]. However, existing 

LBS systems have limitations in the management of dynamic location-dependent 

content as well as in the interoperability between different platforms and application 

domains [12]. These limitations are mainly due to the poor representation techniques 

that are adopted for spatial data and application content. Most existing systems rely 

on geometric spatial information, which is incapable of expressing location semantics 

and does not adhere to some standard (especially for indoor spaces, where GPS is not 

available).  

Navigation services are the most challenging LBS due to their complexity. In a 

smart space, they should take into account users’ physical and perceptual 

characteristics as well as the dynamic space semantics (e.g., temporary obstacles in 

the path elements). Both the path selection and guidance processes should reason over 

the current user context, in order to provide optimal user experience.  



It is expected that Semantic Web technologies can provide solution to the 

aforementioned problems by providing means to resolve interoperability issues as 

well as to implement intelligent and personalized LBS. Based on the Semantic Web, a 

semantic navigation service would be based on a spatial ontology and on appropriate 

knowledge-based inference for path selection. In this work we present such a 

semantic navigation system that can help users, even with sensory, physical or mental 

disabilities, to navigate in an indoor environment. The proposed solution is also 

applicable to outdoor navigation scenarios. Moreover, the proposed representation 

techniques can also support LBSs other than navigation.  

The present paper focuses on selected practical issues not covered in the literature 

(e.g., semi-automatic population of spatial ontologies). More details on the entire LBS 

platform can be found in [4]. In Section 2 we give a short description of the ontology 

used to define the spatial elements as well as a GIS-based methodology for the 

creation of the ontology instances. Section 3 describes the algorithms that can be 

supported by this approach and that have been implemented in our system. Some 

related work is surveyed in Section 4. The paper concludes with a brief discussion on 

some key research issues.  

2. Spatial Modeling 

2.1. Spatial Ontology  

Our approach is based on a semantic description model that exploits concepts from a 

spatial ontology in order to describe basic elements of navigation paths. The ontology 

used is an extension of the Indoor Navigation Ontology (INO) presented in [4].  

  

 
Figure 1. The main concept hierarchy of INO (arrows represent ‘is-a’ relationships) 

 

As we can see in Figure 1, INO defines concepts that correspond to every basic 

spatial element that can be found in an indoor environment, and specifically in or near 

a path. Some key concepts are Space, Path, Path_Element, Path_Point, Corridor, 

Passage, Obstacle, Positioning_Point, Point_of_Interest, Entrance, etc. (their 



definition can be found in [4]). Additionally, INO includes several relationships 

among concepts in order to describe the connections between them. Many concepts 

are defined through necessary and sufficient conditions. This design decision 

considerably simplifies the population process (see Section 2.3). Specifically, the 

class of each passage is deduced from the class of its endpoints. Hence, during INO 

population we only have to manually classify the Path_Points (in the GIS, as 

described in the following section), while the passages are automatically classified by 

the reasoning engine. 

Furthermore, INO contains concepts that can be aligned to user characteristics, 

typically defined in a user ontology. This way, we are able to provide personalized 

services based on INO. Finally, each spatial concept has an associated description 

type, information useful during guidance or for advanced path selection techniques 

(see also Section 3.4).  

Reasoning involved in path searching and user guidance is based on instances 

extracted from files produced by a Geographic Information System (GIS), axioms 

holding for the INO relationships (e.g., transitive relationships) and rules (i.e., user 

profile). In the following sections we describe the two phases followed for INO 

population: a) appropriate annotation of GIS data, and b) automatic creation of the 

ontology instances from GIS data.  

2.2. Ontology-driven map annotation with GIS  

As described in the previous section, the INO ontology provides a number of concepts 

for spatial element representation. In our navigation system these concepts are used as 

a basis for instances creation. In order to define the navigation elements of an indoor 

environment, we use a GIS system. GIS systems help developers to visualize data 

concerning the location of various spatial elements such as entrances, navigational 

points (end points, turn points, junctions), etc. In our model, we categorize points 

according to the concepts defined in INO. Hence, we decided to use a layered 

architecture, where each layer corresponds to a basic concept in INO ontology. For 

example, there are layers that describe points of building entrances and exits, room 

entrances and exits, elevators, ramps, etc. Figure 2 depicts this layered representation.  

The blueprints of each floor are located at the lower layer and are used as a 

reference for the rest of the layers. Based on each floor’s map, corridors are designed 

in order to work as reference for the markup procedure of the spatial elements. Each 

corridor (segment) is represented by a line. Upon these lines, the various points are 

defined as well as their most important semantic features. These features concern the 

floor in which each point is located, its geometry (x and y coordinates), its 

identification number, its label and a short description. For inter-floor connections 

(i.e., vertical passages) special metadata are used for associating their endpoints.  
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Figure 2. GIS Layers 

2.3. GIS-based Ontology Population  

Once the GIS data are in place, one can proceed with the actual ontology population. 

As already mentioned, each layer in GIS files corresponds to a spatial element class 

(or set of classes) defined in INO. Each of these layers is exported as a shape file 

which is further imported in a table of a spatial database. Subsequently, a series of 

algorithms are used to create the instances. First of all, we use an algorithm in order to 

decide for every point in a floor to which line it belongs to. The second step is to 

discover the endpoints of each line in order to help us in the next step (i.e., discovery 

of adjacent points). The rational behind this step is that an endpoint has only one 

neighbor, contrary to a point in the middle of the line, which has two neighbors. This 

procedure is repeated for all floors of the building, for all lines in a floor and for all 

points. The result is that for every point we store its floor, the lines in which it belongs 

to and its adjacent points in the floor. The final step is to create the individuals based 

on INO and the information that we have extracted from the previous steps. The 

outline of the described algorithm is presented in Listing 1. 

2.4. Orientation Issues 

An essential precondition for an indoor navigation service is the ability to determine, 

at any given time and for any given user moving along a route, her orientation. 

Orientation information includes data such as cardinal points and deviation from 

cardinal directions and, combined with positioning data, it can be translated into 

directional information, such as “left” or “right”. Utilizing orientation information in 

the context of indoor navigation services has not been widely explored yet, although it 

can advance the user experience through more intuitive routing instructions (e.g., “the 

third door at your left”, “the door opposite to the coffee machine”). The main obstacle 

encountered in orienting users in indoor spaces is the lack of efficient ways to directly  

 



CreateIndividuals(INO, spatial DB tables) 

Begin 

  Create a list of the Floors 

  Foreach Floor F 

    Foreach line L in F 

      Find the points that belong to L  

      Find the endpoints of L 

    Endfor 

  Endfor 

  Foreach Floor F 

    Foreach line L in F 

      Foreach point P in L 

        If P is an endpoint then 

          Find one adjacent point (based on coordinates) 

        Else 

          Find two adjacent points (based on coordinates) 

        Endif 

      Endfor 

    Endfor  

  Endfor 

  Foreach Floor F 

    Create INO Floor instances 

    Foreach point P in F 

      Create an instance in the INO class indicated by its GIS layer  

    Endfor  

    Foreach line L in F 

      Create and INO Passage instance 

      Perform reasoning (the instance is classified based on its 

         endpoints and its definition in INO) 
    Endfor  

  Endfor 

End 

Listing 1. Algorithm for instance creation 

  

acquire orientation information, since, unlike the outdoor navigation case, most built 

structures prohibit the use of GPS devices. 

In order to resolve this issue, our approach uses a predetermined, arbitrarily chosen 

corridor segment as reference, with known deviation from the North. This corridor 

segment is explicitly represented both in INO and GIS. The angle between each 

corridor segment and the reference segment is calculated and the deviation from the 

North is computed, after adding the deviation of the reference segment to this angle. 

As a result, the segments can be classified, depending on their deviation from North, 

into one of eight cardinal directions (north, northeast, northwest, east, south, 

southeast, southwest, west). Whether a point is at the left or the right of the user, is 

decided by taking into account her orientation (e.g., through a digital compass). 

3. Hybrid Navigation with Graphs and Rules 

The INO instances, along with the ontological representation of user profiles and the 

content semantics, which are described in [4], can be used in a wide range of 

LBS/navigation algorithms. In order to exploit these metadata, a core part of these 



algorithms is implemented through rules. In the following sections some key design 

decisions and algorithmic issues for our system are discussed.  

3.1. Why Rule-based Navigation? 

A navigation algorithm can be considered as a special case of a path-searching 

algorithm applied to spatial graphs. Such algorithms typically try to calculate optimal 

paths with regard to some optimization criteria. For graphs representing spatial 

environments, the most common, and usually the only one, criterion is the Euclidian 

distance. There are many efficient algorithms for computing shortest paths, such as 

A* and optimized versions of the Dijkstra algorithm. However, when one introduces 

more than one criteria to a shortest path searching algorithm (e.g., quickest path, most 

popular path), its complexity increases dramatically. Specifically, we have a Multi-

objective Shortest Path problem [5], which belongs to the broader category of multi-

objective combinatorial optimization problems (known to be NP-hard [6]). Moreover, 

it is usually quite difficult to extend such an algorithm by adding more criteria. For 

example, let us assume that we have a spatial graph where each edge (i.e., corridor 

segment) is assigned a weight vector representing its physical edge and width. We 

also assume that we have designed an algorithm that calculates the shortest routes 

with edges exceeding a minimum width threshold. If we further want to add the 

height of each edge to its weight vector, the algorithm needs to be redesigned. 

However, this is not a trivial task, and even if we manage to design it, its 

computational complexity will increase considerably. Obviously, things become 

worse when we want to add more constraints to the path selection process.  

Since in personalized human navigation systems we expect to have many 

different constraints during route calculation, we decided not to adopt such a 

“monolithic” approach. In particular, the complexity of the route instructions is a very 

important factor in human navigation, since people usually do not follow the shortest 

but the simplest path. The simplest-path algorithm proposed in [14] computes the 

“easiest-to-describe” path in a graph and has similar computational complexity with a 

shortest path algorithm. Although the resulting path is, in general, somewhat longer 

than the shortest one, it is simpler to be followed. 

Hence, we have separated the path selection process to two discrete parts: a) 

identification of k-simplest paths, and b) application of constraints (in the form of 

simple, Horn-like rules) and preferences to these paths. The path that satisfies all or 

most of the constraints is guaranteed to be the simplest acceptable path. This modular 

approach has the following benefits: 

• We take into consideration the route distance, which is usually the main criterion 

in human navigation. 

• We can enforce as many constraints as we want and express them in a rather 

intuitive form of rules.  

• The computational complexity does not scale exponentially with the addition of 

new route selection criteria. In fact, the MOSP problem is decomposed to a k 

Shortest Paths Problem and to the matching problem involved in rule triggering. 

The latter problem has been addressed since many years with efficient solutions 

even for large rule sets (in our case, navigation restrictions) [7]. Nowadays, 



efficient algorithms have been implemented for both problems. Yen presented a 

generic solution of k Shortest Paths which can be implemented in 

O(kn(m+nlogn)) [16]. In recent years, RETE algorithms [15] have been proved 

efficiently in rule execution, facilitating the inference process. 

The algorithmic and implementation details of this approach are provided in the 

following subsection. The capability of the approach to implement other novel 

navigation algorithms for smart spaces is demonstrated in Section 3.4. 

3.2. The Navigation Algorithm 

The implemented indoor navigation algorithm constitutes a hybrid rule-based 

approach of computing the “best traversable” path depending on the user profile, 

which is comprised of user abilities as well as preferences. In particular, the algorithm 

computes the optimal path with regard to a number of criteria, such as the total path 

length and the simplicity of route description. 

The first step of the algorithm involves the creation of a “user-compatible” 

building graph, based on the user profile. This graph is obtained after applying a 

number of disability rules over the INO instances. These rules eliminate the path 

elements that cannot be traversed by a particular user. Once this restricted graph is 

calculated, the execution of the k-simplest paths algorithm follows. 

Afterwards, several other rules assign bonus or penalty values to path elements, 

based on the profile of each user. In addition, the total cost of each path is computed 

as a function of the bonuses and the penalties of the path elements and the total length 

of the path. Finally, the simplest path is selected according to the total cost of the path 

computed in the previous step. The outline of the navigation algorithm is presented in 

Listing 2. 
 

Navigate(INO, origin, destination, user profile) 
Begin 

  Create the building graph from INO 

  Apply disability rules to INO instances 

  Foreach Path Element PE 

    If PE is accessible by the user 

      Discover and remove the corresponding node and its edges from the 

building graph 

    Endif 

  Endfor 

  Compute the k-Simplest Paths from origin to destination 

  Foreach of the k-Simplest Paths 

    Foreach Path Element PE 

      Assign bonus/penalty value to PE, according to perceptual rules 

      and user preferences 

    Endfor 

    Compute the total path length  

    TotalPathRank = f(path length, bonus vector, penalty vector) 
  Endfor 

  Return the path with the maximum TotalPathRank 
End 

Listing 2. Outline of the navigation algorithm 



3.3. Path Selection Example 

In this section, we present a path selection example that demonstrates the execution 

results of the algorithm presented in the previous section. Figure 3 depicts the floor 

plan of a building. Initially, we assume that the user is located in point A and wants to 

move to point H. There are three possible loopless paths that she may follow. 

Examining these routes, it is established that the path ACFEH is the shortest path 

between A and H, but not the simplest one, due to the intersections it contains. On the 

other hand, the path ACFDGH is neither the shortest nor the simplest one. 

Specifically, it is the longer and the most complicated path between A and H and as a 

result it cannot be selected by the algorithm. Finally, the path ABDGH is the simplest 

since it contains only two turns (points B and G). Moreover, it is not much longer 

than the shortest one and, consequently, it is presented to the user as the “best 

traversable” path between A and H. For a more detailed analysis on the complexity of 

a path, one can refer to [14]. 
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Figure 3. An example floor plan 

3.4. Navigation Alternatives Supported by our Approach 

Given that different users and different application domains have different 

requirements for navigation, new navigation algorithms should be devised. The 

following examples briefly introduce three algorithms, which we are currently 

experimenting with.  

Example 1 - Content-based Navigation  

A tourist is interested in ancient weapons and war exhibits. When she visits a large 

archaeological museum, she uses a tour guide that plans some routes of variable 

duration/length, all of which mostly containing exhibits of interest.  

 

Example 2 – Presentation-based Navigation 

A blind user needs some auditory assistance in order to find his way in a building. 

The building’s spatial elements and points of interest are semantically annotated with 

descriptive images, texts, and/or sounds, which are used in the instructions provided 



by the system. In case the system knows that the user is blind, it can calculate paths 

that will be easier to describe to him (i.e., annotated with sounds and text, since the 

latter can be transformed to speech through appropriate software). 

4. Related Work 

Several researchers have recognized that semantics and metadata can improve the 

way location services work. For example, in [8] the authors present a Semantic Web 

framework for context-aware and location services. This framework, among others, 

specifies a context ontology which is used for annotating spaces and delivering 

advanced information services to pedestrian users.  

Semantic spatial representation is at the heart of semantic LBS, since the quality 

of LBS algorithms depends heavily on the spatial modeling of the physical 

environment. As far as indoor navigation is concerned, only a few researchers have 

proposed practical, yet expressive, models. In our view, the most important one is 

presented in [9]. It is a hybrid model, which represents the space as semantic 

hierarchies of “locations” and “exits” that also carry geometric information (e.g., 

coordinates). More ontology-oriented approaches are presented in [10][11]. Even 

these models are necessary for developing LBS, we are not aware of any 

methodologies for (semi-) automatic instantiation of the respective models. 

5. Conclusions and Discussion 

Enhancing conventional context-aware services with semantics seems a promising 

solution for future pervasive computing environments. In this paper we have 

described some necessary elements and methods for implementing such services, with 

a special emphasis on navigation. We showed that implementing such services is 

feasible with the aid of Semantic Web technologies. However, there are some issues 

that deserve further investigation. 

Firstly, existing rule engines are not fully integrated with ontology reasoners, 

thus complicating the inference process. Nowadays, although most prevalent rule 

languages share a common vocabulary with OWL (e.g. SWRL [13]), the lack of a 

single reasoning module handling both rule execution and ontology classification 

becomes clearer. Such a framework would facilitate the combination of ontologies 

with rules by solving possible inference conflicts between different engines. 

Additionally, current rule engines do not fully or efficiently support advanced 

reasoning techniques, such as reasoning over concrete domains. Moreover, new 

challenges arise from the combination of monotonic (i.e., adopted by Semantic Web) 

with non-monotonic features (e.g., negation-as-failure). Finally, the application of 

rules to a model with a large number of instances seems to imply a significant time 

overhead, thus constituting a limiting factor for real-time applications. 
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