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Abstract—Ad hoc networks such as Wireless Sensor Networks 

(WSN) are characterized by the scarcity of energy resources 

(among other resource types). Their intelligent design can extend 

their lifetime without compromising the operation of network 

nodes and the applications running on them. To this end we 

propose an adaptive epidemic scheme that helps reduce energy 

expenditure through intelligent tuning of the infection 

(forwarding) rate. Redundant communications and experienced 

error rate drive the adaptation of the forwarding rate. 

Simulation results show that significant energy gains can be 

obtained through the proposed scheme. 

Index Terms—Ad hoc networks, Wireless sensor networks 

I.  INTRODUCTION 

Wireless sensor networks consist of nodes with minimal 
resources in terms of transmission, computing power, 
bandwidth and storage. It is a common requirement that the 
information owned by them has to be shared by other nodes 
and in many cases (e.g., monitoring applications in a WSN) it 
has to be delivered to as many nodes as possible. This can be 
achieved through established information dissemination 
schemes. 

The adoption of epidemic information dissemination 
models means transmitting in a probabilistic rather than 
deterministic manner [8], [13]. This leads to curtail redundant 
communication. Less energy and network resources are, thus, 
spent in the attempt to disseminate information to a large 
percentage of network nodes [6]. 

Unconditional data flooding by all nodes to all their 
neighbors can only partially tackle the problem as it results to 
excessive resource consumption [17], [18].  

We adopt the epidemic paradigm for information 
dissemination within the WSN and propose an extension 
scheme, in which the forwarding probability is dynamically 
tuned taking into account (i) the amount of the redundant 
message exchanges and (ii) the error rate due to channel noise 
observed on each node. The aim of the extension scheme is the 
reduction of redundant, unnecessary transmissions, while the 
forwarding rate can be increased at the presence of noise, in 
order to secure a more efficient communication. The bottom 
line is to achieve efficient information dissemination at a lower 
energy cost, thus, rationalizing resource use.  

The structure of the paper is as follows: In section II some 
important concepts in epidemic dissemination are laid out and 
the rationale of our proposal is introduced. In section III some 
significant previous work on the issue of adaptive epidemic 
schemes is presented. Section IV is dedicated to the detailed 

analysis of our system model. Models for the network and the 
wireless channel are also elaborated upon in this section. 
Additionally, the suggested adaptive epidemic model is 
presented in detail. Section V concerns some useful metrics for 
evaluating the model as well as simulation results. Finally, 
some conclusions together with future work prospects are 
presented in section VI. 

II. RATIONALE 

Epidemic-based information dissemination is a well known 
model for disseminating information in ad hoc wireless 
networks [1]. It guarantees the reception of pieces of 
information by as many network nodes as possible by 
“infecting” them in a probabilistic rather than deterministic 
manner. This occurs at a given forwarding probability β ∈ [0, 
1] (a.k.a. infection rate). The probabilistic nature of the 
epidemic scheme reduces redundant transmissions [6]. An 
infected node can ‘infect’ other neighboring nodes, but that 
node can be cured too. Nodes that do not carry the infecting 
information are assumed to be in the susceptible state, whereas 
those that do are in the infected state. The cure of an infected 
node can occur at some time once the infecting piece of 
information turns unusable-obsolete. This can occur at a cure 
rate δ ∈ [0, 1]. 

The infection rate, β is the key parameter that we adjust in 
our scheme, in order to improve the information dissemination 
efficiency. The efficiency in information dissemination for a 
certain model is defined as the percentage of nodes that have 
received information out of the total number of message 
exchanges. This is detailed in section V together with other 
metrics used in our evaluation. 

Two well-established and known epidemic models 
concerning the above behavior are the Susceptible-Infected-
Susceptible (SIS) and the Susceptible-Infected-Recovered 
(SIR) models [1]. In the SIR model, a cured node cannot be re-
infected later, thus, becoming immune (or recovered (R), 
removed). On the other hand, in the SIS model, a node is in 
either the susceptible (S) or the infected (I) state before or after 
an infection, respectively.  

The infection process in an epidemic model includes 
communication and processing of the infecting information on 
behalf of the nodes. This incurs an energy consumption burden. 
Minimizing this, while still efficiently infecting the maximum 
possible proportion of nodes is the objective of our adaptive 
scheme. In the proposed scheme, the volume of corrupted and 
duplicate messages received are monitored on each node. 
Hence, the forwarding probability (β) for each node is locally 



adjusted depending on such specific measurements. That is, the 
β rate: 
• increases with the error rate (ratio of corrupted 

messages over total received message count); a high 
error rate is attributed to the channel conditions. 
Increasing the forwarding rate ensures that an adequate 
amount of infecting information shall be correctly 
received and, thus, infect a large proportion of the WSN 
nodes. 

• decreases with the duplicates rate (ratio of received 
duplicate messages over total received message count). 
An increased rate of duplicates means that it is very 
likely that a node is already infected when an infecting 
packet is received. Therefore, this second reception is 
unnecessary and omitting would be advisable. Reducing 
the forwarding rate effectively means that we may 
reduce the duplicates without reducing the number of 
nodes infected.  

III. PREVIOUS WORK 

Redundant transmissions due to the multipath propagation 
associated with ad hoc WSNs, where nodes do not have global 
topology knowledge, are a significant energy-consumption 
factor. Various approaches to overcome this issue have been 
proposed. It has long been suggested that nodes apply selective 
forwarding schemes depending on local conditions. In [7] an 
active scheme is suggested, according to which nodes are 
explicitly queried about their residual energy and their 
neighbors adjust their forwarding rate accordingly. Other 
approaches specify target node selection before information 
forwarding is attempted; in general a subset of a node’s 
neighbors is selected as target nodes. The selection process is 
based on local information. In [9] an adaptive forwarding rate 
is proposed, using the measured error rate in the wireless 
channel as input. In  [10], on the other hand,  a publish-
subscribe paradigm is assumed, which can assist in filtering 
some nodes out of the potential disseminated information 
receivers. One notices, that, whereas the former is an 
essentially passive method, the latter has the features of an 
active one as an active publish-subscribe scheme is a 
prerequisite. 

Further passive methods like utilizing a time-to-live field in 
the disseminated information may also bring improvement as 
well as artificially limiting the buffer size [11]. However, a 
trade-off needs to be defined here, as non-redundant traffic 
may be affected too. An interesting approach proposed in [12] 
foresees quench waves, consisting of messages of a protocol 
whose specific purpose is to limit redundant transmissions at 
nodes that receive them. This active method can contribute to 
flooding rather than restrict it, if the quench wave is sent at a 
late stage. The model in [13] is based on a node adapting its 
own forwarding rate based on local network density awareness. 
According to this model, over-frequent transmissions are 
unnecessary in a dense network. 

We contribute to the field of adaptive epidemic schemes by 
suggesting a scheme which is passive, as it is based on local 
decisions and does not incur any extra communication energy 
cost. Neighboring nodes are not polled on their residual energy 
or their infection state. Forwarding towards neighboring nodes 

is determined probabilistically. This probability is incremented 
in case of high channel noise to counterbalance high losses, and 
decremented in the opposite case in order to minimize 
redundant transmissions. Additionally, it contains a component 
of cross-layer awareness builds on innovative previous work 
[3] in this field. It offers adaptability in terms of error 
correction coding and modulation scheme and performs well 
with a correspondingly changing overhead size. 

IV. SYSTEM MODEL 

A. Network Model  

We assume a WSN with N potentially mobile nodes. Any 
infected node is a source of the infecting information, whereas 
any susceptible node is a potential consumer. At the beginning, 
a finite number of nodes are infected; this setting matches with 
the case of sensor-enabled nodes which disseminate the 
information they possess. The mobility model for the nodes is 
the Random Way Point model [18]. Each node is indexed with 
an integer value. The neighborhood of a node i at time t is 
denoted by the set Vi(t) and a node j is neighbor to node i at t if 
j ∈ Vi(t) node j is within the communication range of node i. At 
time instance t, let I(t) and S(t) be the set of nodes being in the 
infected and the susceptible state, with |I(t)|+|S(t)| = N. |U| 
denotes the cardinality of the U set.  

One has to keep in mind that channel noise renders some 
infection attempts unsuccessful. Hence the effective rate at 
which a node infects others should be placed at a value lower 
than β. 

All infected nodes at t = 0 initialize the infection rate βi(0) 
with the same value β0, for all i ∈ I(0). Each infected node i 
adjusts its infection rate βi(t) at time t. That is it disseminates 
information to a neighboring node j∈ Vi(t) at time t with 
probability βi(t). Moreover, for an infected node there exists a 
probability that the conveyed information expires and that node 
transits anew to the susceptible state. This event occurs to a 
node i with probability, cure rate δi. In our scheme, we assume 
δ to be equal to a fixed fraction of the current forwarding 
probability, i.e., δi(t)=µβi(t) with 0 < µ <1. 

Some useful notation is presented in TABLE I. 

B. Channel Model  

The wireless channel is assumed noisy, resulting in a finite 
packet error rate (PER) in the communication between any two 
neighboring nodes. The noise power experienced at node i at 
time t follows a Gaussian distribution centered around a known 
value n0, which is common for all nodes sharing the same 
wireless channel [20]. The transmission signal is also assumed 
common and of constant power, resulting in a finite signal-to-
noise ratio γ and PER. 

To alleviate the effects of communication over a noisy 
channel, convolutional error correction coding is utilized. Each 
node is able to choose for its transmission among different 
coding schemes corresponding to different coding rates.  

We adopt the adaptive modulation and coding model 
discussed in [3]; each node is capable of transmitting in any 
mode from a predefined set of coding modes characterized by 
different modulation schemes and convolutional coding rates. 
Switching between coding modes occur when predefined SNR 
thresholds are crossed. Values of specific parameters that assist 



in the calculation of the PER are also provided in the same 
work. Such information is consolidated in TABLE II, which is 
also adopted from [3]. 

 
TABLE I 

MODEL PARAMETERS 

Ν NUMBER OF WSN NODES IN THE NETWORK 
I(t) Set of infected nodes at time t 
S(t) Set of susceptible nodes at time t 
βi(t) Forwarding probability at node i at time t. Refers to any node 

when subscript omitted. 
n0 Mean (Gaussian) noise power 

Vi(t) Set of neighbours of node i at time t 
ai(t) State of node i. ai(t) = 1 if and only if node i is infected at time 

t; ai(t) = 0 otherwise. 
Rc,i(t) Coding rate of node I at time t 

PERi(t) Packet error rate at node i and time t 
γi(t) Signal-to-noise ratio at node i and time t 
Mi(t) Received information over time period [t-w, t) from node i: 

( ) ( ) ( ) ( ){ }tmwtmwtmtM
iiii

,...,1, +−−=  

Pi(t) Transmitted information over time period [t-w, t) from node i: 

( ) ( ) ( ) ( ){ }tpwtpwtptP iiii ,...,1, +−−=  
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ei(t) Cumulative number of corrupt packets received at node i at 
time t. Refers to any node when subscript omitted. 

di(t) Cumulative number of duplicate packets received at node i at 
time t. Refers to any node when subscript omitted. 

E(t) Energy spent till time t with an adaptive β scheme 
E0(t) Energy spent till time t with a static β scheme 

n number of nodes infected over number of transmissions 
TXi Subset of time instances in which node i transmitted: 

TXi={t∈{1,…, T}|pi(t)=1} 
RXi Subset of time instances in which node i received:  

TXi={t∈{1,…, T}|mi(t)≠0} 
k Size of the infecting packet in bits 

Adopting convolutional error correction coding and 
choosing to transmit at different coding rate incurs an overhead 
of varying length to the transmitted infecting data, as will be 
shown later. 

TABLE II 
TRANSMISSION MODES IN TM2 WITH CONVOLUTIONALLY CODED 

MODULATION, FROM [3] 
 MODE 1 MODE 2 MODE 3 MODE 4 MODE 5 MODE 6 

Modulat
ion 

BPSK QPSK QPSK 16-
QAM 

16-
QAM 

64-
QAM 

Coding 
Rate Rc 

1/2 1/2 3/4 9/16 3/4 3/4 

Rate(bit
s/sym) 

0.50 1.00 1.50 2.25 3.00 4.50 

αn 274.722
9 

90.2514 67.6181 50.1222 53.3987 35.3508 

gn 7.9932 3.4998 1.6883 0.6644 0.3756 0.0900 

γp(dB) -1.5331 1.0942 3.9722 7.7021 10.2488 15.9784 

 
As suggested in [3], we also adopt that the PER is derived 

from the signal-to-noise ratio according to equation (1). 
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where the  αn, γn and gn parameters are obtained from TABLE II 

C. Proposed Adaptive Scheme 

The information dissemination takes place over a noisy 
wireless channel. This results in both duplicates reception due 
to the multipath propagation and errors due to the channel 
noise. We elaborate on this: 

Consider an infected node i and a susceptible neighbor 
node j ∈ Vi(t) at time t. The successful reception of a piece of 
data by the node j forces the status of node j to change from the 
susceptible to the infected state. When a packet is received by a 
node - besides successful infection - two possible unfavorable 
scenarios can be thought of: 

Case 1: If, due to channel noise, the information is received 
corrupted at node j, the infection fails and an error is recorded.  

Case 2: Due to the multipath and multihop nature of the 
infecting data propagation, it is possible that the node j receive 
infecting information from multiple neighbors. Duplicates are 
received from nodes in its vicinity at that time, i.e. Vj(t). This 
means that, node j may receive information from node i while 
already infected. In this case, the information received is 
considered duplicate and is discarded as redundant.  

Duplicates do not contribute to the information 
dissemination process, but yield an unwanted increase in the 
energy cost. Moreover, the errors mean that some of the 
transmissions do not actually assist the actual information 
dissemination process, either. In our scheme, the β value for an 
infected node is tuned according to the ratios of duplicate and 
corrupt over total packets count received by that node.  

For every time instant we define a finite history window, 
T(w) = [t-w, t), w >0. We formalize the received information by 
a node j over this period as a vector of length w so that:  

( ) ( ) ( ) ( ){ }tmwtmwtmtM jjjj ,...,1, +−−=    (2)  

where mj(t) assumes the values: 

( )




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

=
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corrupted ispacket   theif,

corruptednot  ispacket   theif if ,

2

1

ψ

ψ
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where ψ1 and ψ2 are arbitrarily defined real numbers. 

Then the duplicates rate di(t) and the error rate ei(t) are 
calculated over this interval T(w) as shown in (4) and (5). 

( ) ( ) ( ) ( ){ }wltVjltmtmtd ijji ≤∈=−== ,|1ψ (4) 

( ) ( ) ( ) ( ){ }wltVjltmtmte ijji ≤∈=−== ,|2ψ  (5) 

where w is the width of the time window, i.e., T(w) = [t-w, t),  
w >0. We investigate two adaptation rules for determining the 
β(t+1) value at time t+1 based on the values of the d(t) and e(t) 
values at time t. These are given in equations (6) and (7).  

( ) ( ) ( )( )tetdt ii 210 11 κκββ +−=+   (6) 

( ) ( ) ( )tetd iie
t

211
3

0

1
1 κκκ

β
β +−+

=+    (7) 

where κ1, κ2 and κ3 are constant parameters. These are tuned to 
mitigate the effect of channel losses and multipath propagation 



and also that the calculated β values remain positive. Hence, 
we adopt the value ranges presented in Table III.  

TABLE III: PARAMETERS FOR THE Β CALCULATION 

PARAMETER VALUE RANGE 
κ1, κ2 0.5 -1.5 
κ3 1.0 – 10.0 

With this adaptive scheme, we aim to regulate information 
forwarding in the presence of too many duplicates and increase 
them in noisy, error-prone conditions. 

We adopt convolutional coding for error correction. The 
code in use is specified by its coding rate. 

In a noisy environment, as quantified by the PER, 
modulation and coding mode changes and the coding rate is 
modified accordingly toward lower values, since the SNR 
thresholds are crossed. These are mentioned in section IV.B as 
adopted from [3]. The various modes are presented in TABLE II. 
This modification constitutes an additional variation of the 
transmission characteristics and changing the amount of the 
node’s energy spent at every transmission. 

An infected node at time t observes the values of di(t) and 
ei(t) of duplicates and corrupt packets respectively within a 
finite history time interval, i.e., T(w) = [t-w, t), w >0. 

D. Infection mechanism of a node 

The proposed algorithm is presented in Listing 1. An 
increase in the ei(t) rate results to an increase in the β rate and a 
decrease of the coding rate –inserting more coding bits in the 
transmitted information- so as to overcome the impact of a 
noisy channel. This occurs when the SNR thresholds are 
crossed and transmission assumes a different modulation and 
encoding mode. The opposite is the case of error rate decrease. 
Furthermore, an observed large value of duplicates implies a 
high degree of redundancy which is tackled through the 
decrease of forwarding probability in a fashion opposite to the 
previous. According to this epidemic model, the following 
conditions must be fulfilled, in order for an infection to be 
successful: 

• The target node is a neighbor of the infecting node, 

i.e. nj∈Vi(t). 
• The infected node “decides” to infect, i.e. a 

successful random experiment with success 
probability βi(t), i.e. mj(t)≠0. 

• The received data is error-free, otherwise the received 
packet is classified as corrupted and discarded, i.e. 
mj(t)≠ψ1 

• The target node is susceptible, otherwise the received 
packet is classified as a duplicate, i.e. mj(t)=ψ1 

V. METRICS AND EVALUATION 

We compare the performance of this scheme with a simple 
static epidemic one’s, where forwarding probability is kept 
constant. 

We define as efficiency of the scheme the ratio of the 
infection ratio over the number of transmissions (equation 8) 

( )tM

Ti )(
=α    (8) 

where i(t) is the infection ratio and M(t) is the cumulative 
count of nodes infected at time t. 

Moreover, the cost gain is defined as the value: 

( ) ( ) ( )
( )tE

tEtE
th

0

0 −
=   (9) 

where E0(t) and E(t) are the energy costs in the static case and 
when the adaptive model is used, respectively. This expresses 
the improvement we obtain through the adaptive model. 
1. For t=0:T 

 For i∈I      // For every infected node i 

      For j∈G–{i}// For all other nodes j 
 if αi(t)=1 // if node i is infected 

 if j∈Vi(t) // if node j is neighbor   
  if i decides to transmit 

  if j receives non-corrupt pkt 

    if αj(t)=1 // target alr. infd 

 dj(t)++  // incr. dupl. countr 

      EndIf 

               EndIf 

     Else ej(t)++ 

                  EndIf 

     EndIf 

             EndIf 

           EndFor 

    βi(t+1) = βi ( βi(t) , errorsi(t), dupli(t)

 )  //Calc new βi 

           Select new coding rate //  new coding rate. 

         EndFor 

         B = B
temp

 

         A = A
temp

 

       EndFor 

 

Listing 1.  Pseudocode for infection and β and coding scheme adaptation 

The energy cost is broken down to cost due to transmissions, 
receptions, data processing (computing) and idle state energy: 

( ) ( ) ( ) ( ) ( )tEtEtEtEtE IDLECPURXTX +++=  (10) 

All costs in equation (10) are treated cumulatively. All energy 
cost quantities are considered in addition to the idle state 
energy cost, which is taken for granted as a minimum. It has to 
be pointed out that transmission and reception costs are 
heavily affected by the overhead incurred by the error 
correction convolutional encoding. The computation cost 
expresses the energy spent by a node in order to calculate the 
new forwarding probability and encoding mode. We assume 
that, the energy amounts spent until time t are given by the 
expressions in equations (11). 
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=
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N

i

insCPUCPU TXiRXitE
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where εbitTX, εbitRX, εinsCPU are the energies spent for the 
transmission, reception of one bit and processing of one 
instruction and k is the number of bits of the infecting piece of 
information (or packet) that is transmitted in every transaction 
between two nodes. We assume that the energy spent on 
transmission, reception and processing is according to the 
Mica2 energy consumption model [15] as also adopted in [16]. 
Then it is possible to use (10) to calculate h(t). 

Simulations were run for a network of 100 randomly 
distributed nodes starting with a single infected node and a 



common forwarding probability shared by all nodes. Noise is a 
Gaussian distributed random variable with quite large standard 
deviation. The healing rate is assumed to be δi(t) = 0.1βi(t). The 
fact that the healing rate is assumed to be a stable proportion of 
the forwarding rate excludes the possibility of the epidemic 
dying out, which occurs when δ>β. The metrics defined above 
were measured for static β and for the adaptive schemes 
specified in equations (7) and (8). Both stationary and mobile 
nodes cases were investigated. In the mobile case, the random 
waypoint model was adopted. 

In Fig. 1 results on the infection rate are depicted. The quick 
convergence to values higher than those achieved with a static 
forwarding probability is evident. It can be attributed to the fact 
that the forwarding probability is quickly reduced from the 
initial value to a smooth oscillation around a lower value that 
allows for efficient yet effective infection. TABLE IV 
summarizes the advantage of various variants w.r.t. the static 
case in terms of efficiency improvement and energy cost gain. 
The cross-layer awareness of the proposed scheme clearly 
delivers a considerable improvement in the field of energy 
expenditure, especially in its sigmoid form. 

It can be noted that the improvement is considerable with 
the linear scheme, but even more with the sigmoid one. This 
related to the fact that β is suppressed more severely in the 
latter. 

In Fig. 2 the efficiency for the sigmoid schemes is shown as 
a function of the original forwarding probability. The 
improvement compared to static schemes is dramatic in case of 
modest or higher original forwarding probability, where the 
forwarding probability is compromised more severely. 

It is apparent that the efficiency of this epidemic model is 
maximized for medium transmission probabilities. This is 
intuitively justifiable, as high β values add to the infection rate 
but simultaneously take their toll on transmissions number. 

Moreover, the impact of channel noise appears to be 
significant, which is as expected, since all schemes as defined 
in equations (7) and (8) are affected by the error rate which is 
enhanced by low signal-to-noise ratios. Fig. 3 indicates that 
noisier environments tend to keep the forwarding probabilities 
at higher levels, hence ensuring faster infection, however 
taking a toll in energy consumption (TABLE V). The slow 
learning curve in Fig. 3 is attributed to the high error rate. 
Medium SNR values display lower infection rates as a 
combined effect of errors and mildly suppressed β values. 

TABLE IV 
ENERGY COST GAIN AND EFFICIENCY IMPROVEMENT FOR THE 

LINEAR AND SIGMOID SCHEMES. 

  ENERGY COST GAIN 

(%) 
EFFICIENCY 

IMPROVEMENT (%) 

linear adaptive 58.1 31.6 

sigmoid adaptive 92.5 292.5 

Similar conclusions are drawn for the mobile setting. As 
already mentioned, we assume a RWP model. Additionally we 
consider a homogeneous node mix i.e., each of the susceptible 
nodes can get in contact with any of the infected ones. 
Simulations have made evident (Fig. 4) that, in a mobile setting 
too, the proposed scheme enhances the infection process 
considerably, as infected nodes tend to enter the proximity of a 
larger number of susceptible ones. However, this comes at a 
cost in terms of the total number of transmissions compared to 

the case of static nodes. Mobile nodes discover more neighbors 
and attempt to infect all of them. Finally, the impact of network 
density is also confirmed to be considerable. As seen in Fig. 5, 
the benefit of adaptability seems to be stronger in dense 
networks, as confirmed for a static node setting. 
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Fig. 1.  Number of infected nodes vs. time for a starting forwarding 
probability β0 = 0.5 
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Fig. 2.  Efficiency for the sigmoid scheme vs. the original forwarding 
probability 
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Fig. 3.  Infection rate vs. time for different noise levels. The sigmoid adaptive 
scheme is assessed here 

TABLE V.  
ENERGY COST GAIN FOR DIFFERENT SIGNAL-TO-NOISE RATIOS. SIGMOID 

ADAPTIVE SCHEME 

γ(dB) 1.5 8.75 12 

Improvement 
(%) 

92.30 12.81 83.00 

VI. CONCLUSIONS AND FUTURE WORK 

In this work we presented the benefits of an adaptive 
epidemic information dissemination scheme. At each node the 



forwarding rate is tuned according to the error rate and the 
duplicate rate. Evaluation was focused on the scheme’s 
efficiency in infecting nodes. Higher infection rates are 
achieved with reduced energy expense, which is a significant 
advantage in an ad hoc networks and WSNs where energy 
tends to be scarce. 

Medium values of the original forwarding probability and 
noise levels yield a dramatic efficiency improvement with this 
scheme in terms of energy expenditure and infection rate. 

Original forwarding probability, noise level, mobility and 
network density have an impact on this scheme’s performance. 

In the future we would like to expand our work in models 
with more than one adaptive parameters, while building on the 
benefits of cross-layer awareness at the same. 
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Fig. 4.  Comparison of infection rate vs. time for mobile and stationary node 
settings. Sigmoid adaptive scheme is assumed. 

Further epidemic models are also of interest. They expand 
into multi-epidemic settings, and include additional, partially 
infected states and cater for differentiation in the disseminated 
data.[4]. The infecting data consists of non-identical packets, 
and this provides for a kind of higher-layer awareness. In such 
settings, larger sizes of infecting data could be considered, 
moving the model beyond the WSN landscape, where 
information of limited size is exchanged. 
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Fig. 5.  Comparison of infection rates vs. time for different network densities. 
The various curves correspond to different normalized network densities 
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