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Abstract—Situation awareness is considered as an approach to 
model user context in ubiquitous information services. Such 
services can intelligently infer knowledge about user situation. 
Moreover, situational reasoning is attained taking into 
consideration similarity-based approaches. This paper proposes 
approximate decision-making about situational similarity using 
conceptual modelling, ontological representation, and, fuzzy logic 
inference.  
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I.  INTRODUCTION 
Context awareness is claimed to manipulate context related 

to certain entities. Moreover, situation awareness is considered 
as the particular favor of context awareness, where situations 
are viewed as logically interrelated contexts. Furthermore, 
modeling and describing situations as concepts in science-
oriented ontologies, as well as, reasoning about situational 
context may lead to a specific kind of situation classification – 
subsumption. Specifically, the most similar user situation, of a 
situations ontology, with that of the current situation could 
approximately be interpreted as the most promising (i.e., 
relevant) in terms of subsumption. 

This type of classification infers those situations that an 
entity is involved in and the degree of such involvement. What 
is proposed is an approximate reasoning procedure in order to 
infer knowledge about rather similar and compatible situations. 
Actually, the proposed system attempts to extensively compare 
a given situation with the situations of a specific ontology. Such 
system selects the most relevant situations. In addition, we refer 
to how the proposed system takes into consideration the degree 
of the user’s situational involvement in a Pervasive Computing 
Environment (PCE). Actually, the system attempts to react to 
the current situation that a user may be involved in, by firing 
several rules that are predefined into the corresponding user 
profile. Such rules trigger certain actions given the current user 
situation. 

It is known that many real context aware applications 
require support for managing imprecise context. Specifically, in 
a PCE, contextual information is rather vague and cannot 
always be retrieved. However, such vague information may 
lead to an inexact contextual reasoning. Several methods have 

been proposed and applied to deal with vague contextual 
information [1]. Moreover, vague contextual information 
implies vague situation modeling and, hence, approximate 
reasoning over such situations. In addition, such kind of 
reasoning produces approximate knowledge about the user 
situational involvement. The proposed system deals with such 
vague knowledge through fuzzy inference rules. Such rules not 
only cope with the imprecise knowledge about situational 
involvement, but also, with the user behavior and his/her 
historical context. The latter contexts support the proposed 
system with specific semantics in order to defuzzify the 
knowledge about the user situation involvements.  

The rest of this paper is organized as follows: In Section II, 
we describe a specific scenario depicting the approach of the 
situation awareness in a PCE. Section III studies how to use 
conceptual modeling representations in order to model 
situational context, and in Section IV, we represent contextual 
similarity measures that are aware of context semantics. Section 
V focuses on reasoning about contextual similarity based on 
semantics and specific relations among diverse situational 
contexts. Section VI focuses on several fuzzy inference rules, 
which allow the proposed system to make decisions with 
respect to the user situations. In Section VII, we evaluate the 
proposed system. Section VIII discusses related work on that 
research area and, finally, Section IX concludes the article.             

II. SITUATION AWARENESS 
Situation aware applications [2] describe a new class of 

context-aware applications that are capable of recognizing a 
user situation. Moreover, they exploit the situational user 
context in order to provide him/her with appropriate 
information, or to perform certain tasks, in a pervasive way. 
Such kind of applications adapt themselves to a current, and 
maybe future, user situation context, hence, they react in a 
situation dependent manner. 

In order to deal with situational context, we distinguish two 
types of rules that the proposed system reasons about situations; 
the situation determination rules and the action determination 
rules. The first type of rules refers to the conclusion (i.e., 
subsumption) about the class of compatible situations a PCE 
user may be involved in. Specifically, such rules combine 
contextual information from several knowledge resources about 
the user context, like user location, time, agenda entries, mobile 



terminal context, and the proximity to other people. The form 
of such rules could be the expressed as the follows: 

 
),(),( situationuserInisInvolveduserxcontext ii
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Such expression denotes that, whenever the logical 
conjunction of the user contextual information xi (i.e., 
context(xi, user)) holds, then, it is implied that he/she be 
involved in a certain situation. Such contextual information 
may be imprecise due to limited resources or inexact contexts. 
Hence, we can approximately reason about the current user 
situation. Specifically, the more contextual information the 
system manages, the more accurate the results of the situational 
reasoning process will be. 

Consider, for instance, that Alice and Bob are both company 
executives, located in a room of the company building (e.g., 
possibly not a meeting room) during the time of the meeting. 
Moreover, Bob’s electronic agenda application, which is 
running on his PDA, contains a record related to an internal 
partner meeting at the same time. Obviously, we can conclude 
that they have a formal meeting, even though there is no exact 
information about the room they are located in, and of what 
kind of other persons are possibly in the same location (e.g., 
business executive, manager). Actually, the reasoner could not 
infer that they have a formal meeting, because it is not certain 
that Bob and Alice are the only company executives in that 
location. In addition, there is no information about the number 
and kind of other people that are located in this space at the 
same time. Furthermore, the reasoner could not even conclude 
that they have a meeting because the room is not necessarily a 
meeting room. 

The uncertainty, which arises from the logical comparison of 
the current situations of Bob and Alice with those of the 
reasoner, can be interpreted as a similarity measure between 
them. Specifically, the situations could be modeled as concepts 
in taxonomies. Hence, one can calculate their similarity, in a 
quantitative way, and can reason about it. 

The second type of rules associates each situation with a set 
of certain actions that can take place in a ubiquitous manner. 
Specifically, a user could assign to a context-aware application 
in a PCE a task related to his/her current situation. The form of 
such rules could be expressed through the following statement. 
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where, task is the corresponding task with the specific 

situation and option is the task application mode, as it will be 
described in the following paragraphs. One could denote that 
Rule 2 is rather similar with the expression defined in Situation 
Calculus [3]. Whenever the context-aware application infers 
(with a degree of belief) that the user is actually involved in a 
certain situation and his/her profile defines a certain task for 
that situation, then, the application performs that task. The 
degree of such belief leads to diverse options of the task 
execution. Suppose that Bob is about to attend a very formal 
meeting (i.e., a meeting with only business executives and 

managers). In such case, he should not be interrupted by 
insignificant e-mails during the meeting. Instead, he desires to 
be informed only on urgent matters. We assume that all senders 
in his address book have been marked beforehand with an ‘S’, 
which stands for significant, or, ‘I’, which, respectively, stands 
for insignificant senders, as depicted in Table I. Hence, 
according to this scenario, the most important e-mails are 
forwarded to Bob’s PDA, for instance, those which are related 
to his work (e.g., the minutes of the meeting, or other crucial 
files). In this case, the addresses of all business executives have 
been marked with an ‘S’. Whenever a situation reasoner infers 
Bob’s situation, i.e., attendance of a formal meeting, then it can 
fire the specific action determination rule related to the 
‘Forward significant e-mail’ task. On the other 
hand, whenever such reasoner is not quite certain about Bob’s 
situation, then, it has to deal with that uncertainty. This could 
be achieved either by notifying Bob how to act, or by taking no 
action. Finally, if the reasoner is sure that Bob is not involved 
in such a situation, then, it actually takes no action.  

There are three options related to the process, which is 
managing Bob’s e-mails during a meeting: ‘take no 
action’, ‘take action’, and ‘notify’. The first one 
does not proceed with any activity if a given event occurs (e.g., 
a less important email just arrived). According to the second 
option, once a specific incident occurs (e.g., a business 
executive’s e-mail arrives), the process has to perform the 
certain task ‘Forward significant e-mail’. Such 
activity denotes that the system pervasively performs the 
desired task without further user interruption. The third option 
just reports that a specific event occurred. For instance, an e-
mail from someone, which is not included in the address book, 
arrives, or the reasoner is not certain about Bob’s situation. In 
this case, Bob’s situation is rather ambiguous and, hence, the 
system cannot infer. What is proposed is notify the user about 
such incident, for instance, through a message display. This 
policy ensures that Bob will not miss an important message, if 
the e-mail is actually urgent and he will be less annoying, in 
case of another meaningless interruption. 

 
TABLE I. SYSTEM DECISIONS 

E-mail 
address 

marked as 
System Option Bob’s reaction  System 

Revision 

‘I’ Take no action – – 

‘I’ Take no action Take action Penalty 

‘S’ Take action –  
Forward significant e-mail – – 

‘Unknown’ Notification Accept Notification – 

‘Unknown’ Notification Reject Notification 
(Bob is interrupted) Penalty 

 
The main purpose is how Bob’s reaction and behaviour 

could be exploited to render the system more accurate and 
pervasive with respect to its actions. Consider the fact that an e-
mail arrives at Bob’s PDA but Bob decides to reject it. Despite 
the fact that the e-mail was regarded by the system as 
important, it turned out to be insignificant for Bob. In this case, 



the system has to mark this e-mail as ‘I’ and never forward a 
future e-mail of the same sender, while Bob is still involved in 
the previous situation. Table I depicts the system options and 
future actions (revisions) related to Bob’s situational context 
and behaviour.  

The proposed system deals with vague context knowledge 
related to user situations, and attempts to reason about 
uncertainty whenever contextual information is imprecise. 
Specifically, we define the user situational involvement as a 
degree of involvement, namely dINV. Such degree denotes the 
level of a user involvement in a certain situation. It partially 
affects the reasoner in order to determine which one of the three 
options (‘take no action’, ‘notification’, ‘take 
action’) is most suitable for the current user situation. 
Additionally, whenever the reasoner is certain about a user 
situation, then, it triggers the system to take, the corresponding 
with that situation, action in a pervasive way. Lower degree of 
certainty (i.e., lower value of dINV) leads the system to either 
notify the user about taking the corresponding action, or 
performing no action at all. We define degree of pervasiveness, 
dPER, as the measure that denotes whether the system is capable 
of reasoning about user situation in order to take actions with, 
at least, the minimum number of user notifications, or 
interruptions in the worst case. In addition, such measure refers 
to user historical context (i.e., reaction). Throughout this paper, 
we experiment with reasoning about vague context over two 
system versions. The first one (S1) is only aware of the vague 
situational context (i.e., takes into account only the dINV 
measure) in order to determine the most suitable option for the 
task application; whilst, the second version of the system (S2) 
takes into account both the dINV and dPER degrees. 

III. SITUATION MODELING 
Situation awareness [4, 5] may be regarded as a special kind 

of context awareness, which models situation logically 
interrelated concepts. However, conceptual modelling explores 
the syntactic perspective of concepts but also the semantic 
dimension. Taking into account the similarity among concepts, 
in taxonomy, produces a more spherical building of such 
taxonomy including the essential semantics. There is a variety 
of conceptual modeling techniques that provide different 
similarity measures and determine whether two concepts are 
semantically similar. In fact, the more semantic information a 
conceptual schema disposes, the more precise the similarity 
measurement becomes. Undoubtedly, semantics is the key 
factor for reasoning about the qualitative as well as the 
quantitative similarity, and compatibility of two concepts. 

Specifically, we model situation context as set of concepts 
related to different ontologies. Such ontologies describe and 
interpret the specific contextual information associated with the 
user situation. Hence, the similarity measure between two 
situations, declared as concepts, implies the similarity measure 
among those concepts that describe such situations. Actually, 
the dINV measure is defined as a function over the similarity 
measure between the current user situation, Q, and with an 
asserted situation definition in situation ontology, as that in 
Fig.1. Moreover, conceptual modeling not only deals with 

modeling contextual information as interrelated concepts, but, 
also, with defining certain semantics among such concepts. For 
instance, the Meeting situation in Fig.1 is considered as a more 
general concept (super-concept) than that of the Formal 
Meeting situation (sub-concept). Specifically, the latter defines 
that the Formal Meeting could only take place with persons that 
are either business executives or managers. It has to be noted 
that taxonomy is a set of concepts organised by the is-a relation 
(e.g., formal meeting is-a meeting). Hence, Meeting is told to 
subsume Formal Meeting forming situation taxonomy. 
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Fig. 1. Situations Ontology 
 
It is well-known that RDF(S) [6] offers more expressivity in 

terms of semantic information modeling than RDF [6]. 
According to the latter knowledge representation, concepts and 
the relations between them are described using the Subject–
Predicate–Object (SPO) scheme. On the contrary, RDF(S) 
gives the opportunity for richer conceptual representation, since 
it allows more semantics to be added in the conceptual 
taxonomy. Since we have to reason about situational context we 
need a more expressive language in terms of semantics and 
capable of conceptual subsumption. We make use of the OWL-
DL [7] ontology language in order to build the situation 
ontology, which supports concept classification and reasoning 
through the SWRL language [8]. Apparently, given two 
concepts that belong in taxonomy, one can calculate the 
similarity between them, taking into account their relative 
taxonomic position. Apart from the classic taxonomy, OWL-
DL can support a set of relations among concepts. For instance, 
a Formal Meeting is taking place at a specific meeting room 
(corresponds to a location relation), on a certain day and for 
predefined duration (corresponds to temporal relations). 
Moreover, the attendee of such kind of meeting could be 
company executives and managers (corresponds to personal 
relations). Actually, conceptual modeling deals not only with 
conceptual taxonomies and relations but, also, with more 
special features, such as mereotopological (e.g., part-of 
relations) or temporal relations (e.g., discernible intervals). 
Such kinds of semantics are not further explained throughout 
this paper, but, are taken into consideration in order to compute 
the situational similarity. 

From an ontological modeling perspective, situation can be 
modeled as interrelated concepts of diverse ontologies. Such 
ontologies refer to specific contextual information representing 
the situation context. We call such specific ontologies local 
contexts. Local contexts describe certain parts of the user 



situation context like, time, location, personal, and mobile 
device context. Specifically, such ontologies describe the 
following local contexts:  
Spatial context: It maintains information about the place, in 
which a person acts (e.g., office, meeting room, staff room), the 
number of present persons that the place contains (e.g., alone, 
crowded), what personal contexts such persons have (e.g., room 
only for company members) and, sets of part-whole regional 
axioms derived from upper mereology ontologies [9, 10]. 
Temporal context: It refers to a person’s relative time, such as 
meeting time, working time, lunch time, and to his/her absolute 
time, such as morning, evening, night.  
Artifact context: It represents the context of the user’s 
computational entity, application, or mobile device such as 
PDA, Communicator. Such context could be the type of the 
running application (e.g., e-mails reader), its situation (e.g., 
idle, downloading files), or the profile of his/her mobile device 
(e.g., multimedia capabilities, memory capacity. 
Personal context: It denotes the roles that a person may have 
in a certain situation. Specifically, such roles could be worker, 
manager, company or business executive, and secretary. 
Moreover, personal context refers to personal electronic agenda 
entries, such as scheduled meetings, dates, as well as, user 
preferences. 
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TABLE II. DL SYNTAX FOR Q AND FORMAL MEETING SITUATIONS 
Q ⊆ Situation Π (∃ is Involved By. (Bob Π  
∃ has Time. Meeting Hour Π  
∃ is Located In. (Interior Room Π ∃ contains. Manager) Π 
∃ has Business Role. Partner Π  
∀ has Business Role. Business Partner)) 
Formal Meeting ⊆ Meeting Π (∃ is Involved By. (Partner Π  
∃ has Time. Meeting Hour Π ∃ is Located In.  
                  (Meeting Room Π  
                   ∃ contains. Manager Π  
                   ∃ contains. Business Partner) Π  
∃ has Business Role. Partner Π  
∀ has Business Role. Business Partner)) 

 
In Table II, we model the current situation of Bob (Q) and 

the Formal Meeting situation using the Description Logic (DL) 
syntax. One could denote the diverse semantics over such 
situation descriptions, such as the subsumption (IS-A) relation 

(⊆), and the existential (∃) and quantificational (∀) restrictions 
over the relations. Moreover, situation could be envisaged as a 
semantic graph which is related to concepts, as depicted in 
Fig.2. In this figure, Q situation is a concept related to diverse 
local contexts. Two situations are similar whenever their 
corresponding local contexts appear similar, as we discuss in 
the following section.  

 
IV. MEASURING SITUATIONAL SIMILARITY 

 
The similarity between concepts could be defined as the 

function sim( . , . ) that maps two concepts to the interval [0, 1]. 
The value of 0 denotes that the two concepts-arguments are 
strictly not similar, whilst, the value of 1 indicates that both 
concepts are equivalent. Hence, one can consider that, 
similarity between situations, is a weighted sum of the 
similarity of their local contexts as parts (Level 0). 
Furthermore, local contexts can be further described as 
concepts that contain even more specific local contexts (Level 
1), hence, more specific knowledge (e.g., a meeting room - 
spatial context - that contains only business executives - 
personal context). Those kind of more specific contexts may, 
also, include other much more specific local contexts (Level 2), 
and so on. Consequently, similarity of two situational contexts 
of Level n+1 depends on the similarity of their aggregated local 
contexts of Level n. In our case, Q situation is modeled as a 
concept that consists of four local contexts, namely the: Spatial 
(Level 2), Temporal (Level 0), Artifact (Level 1), and Personal 
context (Level 1). Let the similarity measure of situations Q and 
S of level n, be sim(n, Q, S), then, it is recursively calculated as:  
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where, wj is the corresponding weight for the local contexts Qj 

and Sj, such that wj ∈ [0,1].  
 

0.4 0.5 0.6 0.7 0.8 0.9 1
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Recall measure related to Situational Similarity 

Pr
ec

is
io

n 
m

ea
su

re
 re

la
te

d 
to

 S
itu

at
io

na
l S

im
ila

rit
y 

OWL-DL
RDF(S)
RDF

 
Fig. 3. Precision vs. Recall related to Situational Similarity Measure 

 
There are a lot of techniques that calculate such types of 

similarity [11-14]. We use the similarity measure among 
ontological concepts as proposed in [12], which exploits the 
Tversky methods [13]. In order to evaluate contextual similarity 
we use the standard metrics of Precision and Recall [15], as 



depicted in Figure 3. Specifically, Recall is defined as the 
percentage of the retrieved and relevant situational contexts 
over the relevant situational context instances in the ontology. 
Precision is defined as the percentage of the retrieved and 
relevant situational context instances over the retrieved ones.  
Note that the similarity measure based on more expressive 
conceptual representations (e.g., OWL-DL) increases the value 
of Precision. On the other hand, RDF and RDF(S) 
representation schemes assume lower values of Precision. 
 

V.  REASONING ABOUT SITUATIONAL SIMILARITY 
 
In this section we describe how the proposed system selects 

the most relevant situations with the current user situation 
(denoted as Q). We assert every situation as disjoint with all 
others (i.e., they share no common features), and some are 
asserted compatible with others. The latter relation, that of 
compatibility between situations, means that a user can be 
involved in more than one situations at the same time. For 
instance, Bob can be involved in a Meeting and Checking E-
mails situation concurrently, but not in undertaking physical 
exercise, like Jogging, which is regarded as incompatible with 
the two former situations. Moreover, Figure 1 depicts, also, the 
position of the classified situation Q among others, after the 
classification of the DL reasoner RACER [16]. Such reasoner 
deduces that Q is only a Meeting situation, and, thus, 
incompatible with the Jogging situation. However, there is no 
information about the degree of subsumption because, the 
reasoner provides only crisp results that either match or not. 
The result of the similarity measure is the set K containing <Si 
,value> tuples. The value is the degree of similarity, i.e., sim(n, 
Q, Si)1 and Si is the candidate relevant and compatible situation 
with Q. In our case, K = {<Meeting, 0.6106>,<Formal Meeting, 
0.8590>,<Business Meeting, 0.6200>}. One can conclude that, 
the most relevant situation is Formal Meeting, which is a 
meeting, something that verifies the results of the proposed 
mechanism. 
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Fig. 4. Similarity Measure vs. Position of situations in the taxonomy 

 
The similarity value related to the Meeting situation is not so 

high as any of its subsumed meeting situations. Specifically, Q 
is more relevant to Formal Meeting rather than Meeting. The 

latter situation is a more general description, thus, provides less 
information. In addition, Q is less relevant to the most specific 
situation, Business Meeting. This means that Q situation 
description refers to a more general concept than that of the 
Business Meeting situation. After simulations, the similarity 
value of any super-concept situation of Q, is lower than that of 
any sub-concept situation of Q. Figure 4 depicts how the 
similarity value of the classified Q is distributed along the depth 
of Q (i.e., the position in the taxonomy). Actually, the similarity 
value of the most specific situation, i.e., the deepest situation in 
the taxonomy, experimentally, never drops below the minimum 
similarity value, which is that of the most general situation 
(e.g., Meeting situation).  

 
1 Throughout the paper the n=2, denoting the maximum level of the situation 

local context.  

 
Procedure Reasoning about Com patible / Incompatible Situations
Input : Q, current situation

K, asserted situations in the situation ontology
Output : W , set of compatible and relevant situations
Begin

Set sM AX the most relevant situation com pared with Q
/* that with the highest dINV value*/
Set H M AX the situation taxonomy that contains sM AX
Set tM AX the most general situation of HM AX
/* there is no other situation in HM AX that subsumes tM AX */
Let K be the list of compatible and/or incompatible situations with sM AX
Sort (K), W = ∅
/* K sorting is done with respect to the dINV value */
For each incompatible situation sINC ∈ K Do

If there exists sINC such that:
(tM AX.dINV ≤ sINC. dINV ≤ sM AX . dINV) Then
K = K \ {sINC} 

End If
End For 

Notice: the compatible situations sC : sC ∈ H M AX ∧ sC ∈ K
are considered necessary to be relevant,

H ence: W = W ∪ {sC}
For each compatible situation sC ∉ H M AX Do

If (tM AX.dINV ≤ sC.dINV ≤ sM AX .dINV) Then
W = W ∪ {sC}

End If
End For

W =Sort(W )
RETURN W

End.
Fig. 5. Similarity-based reasoning process for compatible situations  

 
Such behavior appears in each situation that is compatible 

with Q. The reasoning process, shown in Figure 5, returns the 
most compatible and relevant situations related to Q. 
Incompatible situations with those that subsume Q, are 
considered irrelevant. This is attributed to the fact that, our 
proposed reasoning process returns only the situations that are 
relevant to Q. Such reasoning process is based on the Open 
World Assumption [29], not elaborated in this paper. After the 
application of the reasoning process, the set of the most 
compatible and relevant situations is W = {Meeting, Formal 
Meeting, Checking E-Mails}. The two former situations derived 
from the meeting taxonomy, and the later is a compatible with 
Meeting situation. Such situations are confined by the dash-
lines in Figure 1.    

     
A. Degree Of Situation Involvement 

 
Let a(n, Q, Si) be the proportion of the similarity value of Q 

with Si over the mean similarity values of Q with any situation 
Sj in the situations ontology, such that Sj belongs to W (see 
Reasoning Process in Section V) and is different from Si, with 
n≥0. Such metric, defined in Equation 2, assumes values in 



[0,∝]. High values denote high involvement of a user in the 
situation Si with respect to the rest of compatible and relevant 
situations. dINV and a are defined in the following equations: 
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A zero value of dINV means that, the reasoner is strictly not 

certain about the user involvement in Si, while, a value of 1 
denotes that the reasoner is certain about the user involvement 
in Si. Hence, the situation determination rule could be written 
as:   

 
INVd with ),(),( situationuserInisInvolveduserxcontext ii
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where, xi stands for the contextual information related to the 

ith local context instance, such as spatial and temporal context.  
According to the similarity-based reasoning, the situation 

decision rules for the situation, of Bob are expressed as follows: 
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where M, FM, and CeM stand for Meeting, Formal Meeting 

and Checking E-Mails situations, respectively. According to the 
crisp reasoning and due to vague knowledge about Bob’s 
context, the situation determination rule for the same case is as 
follows: 

),(),( MBobInisInvolvedBobxcontext ii
→∧  

 The crisp reasoning process either accepts that Bob is 
involved in a Meeting situation or not. Instead, the similarity-
based reasoning defines a ratio that denotes in what level the 
system is certain about Bob’s involvement in compatible 
situations. 

The second type of rules deals with how the system can 
trigger certain tasks with respect three specific options (i.e., 
‘take no action’, ‘take action’, 
‘notification’).  

One could define several thresholds for the above three 
options (e.g., similarly to Figure 6). According to the set of 
thresholds, if the dINV is below the value of 0.65 then the task 
‘Forward significant e-mail’ is not performed. 
Moreover, if dINV lies between the value of 0.65 and 0.85, then, 
the corresponding task is not carried out until a positive answer 
is given by the user. Finally, the corresponding task is 
performed whenever the system is rather certain (i.e., any dINV 
value over the value of 0.85 signals such certainty). 
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Fig. 6. The mode of the task execution is based on certain thresholds    

However, the S1 system is implemented to make decisions 
about the situational context based on such set of thresholds. 
Such system is not aware of the user behavior and responses 
whenever the dIND lies between the ‘notification’ option 
boundaries (e.g., from 0.65 to 0.85). This means that, whenever 
the reasoner is not adequately certain about the user’s situation, 
then, it performs the corresponding task after having notified 
the user. This is not so acceptable or convenient for the user, 
especially in a PCE, since even though S1 is aware of the user 
situational context, it disregards the user reactions. Consider the 
fact that, the user is always notified for a task application, 
because the context-aware application could not accurately 
capture the user context, hence, it is more uncertain about the 
user’s situation. Moreover, such crisp thresholds do not reflect 
the nature of the situation certainty. If the value of the dINV is 
0.84999, then the user has to be notified, even though it seems 
more reasonable for the system to perform the corresponding 
task. Fuzzy logic deals with the type of uncertainty, which 
arises when the boundaries of a class of objects are not sharply 
defined (e.g., the diverse options of the task application). The 
proposed system introduces Fuzzy Logic mechanisms in order 
to reason about situation similarity, as we discuss in following 
sections. 

 
B. Degree Of Pervasiveness 

 
The system has to be aware of the user situation context and 

the user reactions related to the ‘notification’ option. 
Actually, in order for the system to act pervasively, it has to 
take decisions about performing a task with a specific option, in 
case the user is highly involved in the corresponding situation. 
In addition, such task performance could be done without the 
user notification or interruption, if such thing has been 
specified in his/her profile. The uncertain decision is raised 
whenever the system has to decide between the 
‘notification’ boundaries. Specifically, the system is 
supposed to act pervasively in high value of dINV and to take no 
action in low value of dINV. A medium value of dINV could lead 
to a user notification. Once the system has dealt with the sharp 
boundaries of the options task application, it has to take into 
account the user reactions, too. Let the number T = A + B + C 
denote all the system decisions related to the three options for 
the application of a task, for a specific user involved in a certain 
situation. Specifically, A is the number of the system decisions, 
which refers to the ‘take no action’ option for that task. 
In addition, B denotes the number of the system decisions that 
refers to the ‘notification’ option, and, C is the number 



pertaining to the ‘take action’ option. The ratio 
CB

Bp
+

=  

denotes the percentage of the user notifications / interruptions 
by the system over the total number of the system decisions 
related to either ‘take action’, or to ‘notification’ 
option. Hence, the higher the value of p is, the more times the 
system is either uncertain about the user’s situation or 
disregards his/her past reactions, by interrupting him/her with 
‘notification’ messages. Consequently, a high value of p 
denotes a low degree of the system pervasiveness. However, 
the number A does not interpret that the system does not disturb 
user through notifications, which implies high degree of 
pervasiveness. Instead, the system implies that the user is 
believed not to be involved in a certain situation, hence, it 
decides to take no action.  

Furthermore, the system ought to be aware of the user’s 
reactions whenever the latter is interrupted by 
‘notification’ messages. In such case, we assume that in 
every notification message there is a ‘do not disturb 
again’ choice. Hence, whenever a ‘notification’ 
message arrives to the user display (see Figure 7), implying that 
the system is not certain enough about how to proceed, the user 
either accepts it, by replying according to the message 
suggestion (e.g., select Yes/No), or rejects it by choosing ‘do 
not disturb again’. In the case of rejection, the system 
records the user reaction and attempts to self-adapt to the user’s 
response. Such kind of adaptation, results in reducing 
notification messages sent to the user, even though the system 
cannot decide on the corresponding task execution.  

 

 
Fig. 7. The user notification message from the system 

Let q be the proportion of the user rejections on the received 
‘notification’ messages over B: 

B
choicesagaindisturbnotdoq     ''#

= . A high value of q denotes a 

low degree of system pervasiveness, which means that, the 
system is not aware of the user’s past reactions. We define as 
degree of pervasiveness, dPER, the metric that relates to the 
weighted sum of the p and q proportions, as shown in the 
following equation:  

 

qp
dPER ).1(.1

1
ββ −++

=  Ex.4 

where β ∈ [0,1] denotes the significance of p toward to q. 
dPER assumes values in the range [0,1]. A value of 1 shows that 
the system acts in a pervasive way, while, a value of 0 indicates 
the contrary. The latter implication is explained as follows; (i), 
the user is notified whenever he/she is strongly believed to be 
involved in a certain situation, (ii), the system does not take 
into account previous reactions of the user, and, (iii), the system 
has rather vague knowledge about the current user situation. 
Note that, whenever the weighted sum of p and q is equal to the 

value of a(n, Q, Si), for certain current situation context Q and 
asserted compatible situation Si, then, dPER + dINV =1. In this 
case, the values of dPER and dINV describe a system, which is 
equivalently certain of the current user situation involvement, 
and, of the decision for the corresponding task execution.  

 
VI FUZZY DECISION MAKING 

 
System S2 is aware of both degrees dINV and dPER, while S1 

is only aware of the dINV degree. The former system revises 
dINV in order to infer about how to proceed with a certain task 
execution. Specifically, it combines the two degrees and 
produces a holistic degree, namely these degrees of improved / 
enhanced situation involvement, dINVP. The latter degree 
implies that a system is not only aware of the user’s situation, 
but it also takes into consideration the user’s past reactions to 
the system decisions (i.e., historical context). Moreover, dINVP 
denotes the revised value of the dINV, since the former 
determines a more sophisticated value of the latter degree. 

We adopt Fuzzy Logic [17] to denote the fuzzy relation 
between dINVP of two situational contexts, Q and Si. In fact, we 
assign for both dINV and dPER, two membership functions, µINV 
and µPER, respectively, denoting for each metric the degree of 
belonging to a fuzzy set. Specifically, µINV maps dINV into the 
range [0, 1], where 1 means full membership and 0 means no 
membership. µPER is defined, analogously, as illustrated in 
Figure 8. Let R(dINV, dPER) be a fuzzy relation representing the 
revised dINVP between the two situational contexts. Such fuzzy 
relation reasons about the dINVP of such contexts based on some 
degree to the dINV of those contexts, and on some degree to the 
dPER of the system behavior. 

We also define the fuzzy sets of linguistic variables as SINV 
= {high, medium, low} related to dINV, SPER = {high, medium, 
low} related to dPER, and, SINVP = {inactive, notifying, active} 
related to dINVP. Low dINV denotes that the system lacks 
certainty about the user involvement in the situation Si, thus, it 
decides to ‘take no action’ for the corresponding task. 
Medium dINV denotes that the system is somewhat certain about 
the user situation involvement in Si and, it decides to notify the 
user about the task execution. High dINV denotes that the system 
is certain about the user situation involvement in Si and, then, it 
decides to ‘take action’ without disturbing the user. 
Moreover, high dPER implies that the system acts in a pervasive 
way (i.e., the system is capable of making decisions avoiding 
user disturbance), medium dPER illustrates a system behavior, in 
which the user is notified for a task execution, and, low dPER 
denotes that the system is unaware of the user’s historical 
context and reactions.  

Finally, the revised dINVP is supposed to be aware of the user 
situational and historical context. Specifically, active dINVP 
denotes that the system acts in a pervasive way, aware of the 
user context, while, inactive dINVP denotes that the system is 
certain to ‘take no action’. Notifying dINVP indicates that 
the system is certain neither to take action, nor, to take no 
action and believes that it should notify the user for a specific 
task execution. Obviously, dINVP illustrates a more certain 



system with respect to decision making, since it is aware of 
both the user situational and historical context. To illustrate 
how the system applies fuzzy inference rules in order to reason 
about dINVP, we show the five most crucial fuzzy rules in Figure 
9. The system generates dINVP by defuzzifying from the 
aggregation result, taking the centroid of the superimposed 
membership curve, as depicted in Figure 8, with respect to dINV 
and dPER values. 
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Fig. 8. Membership functions for dINV, dPER, and dINVP  

1. if dINV is low then dINVP is inactive
2. if dINV is high then dINVP is active
3. if dINV is medium and dPER is high then dINVP is active
4. if dINV is medium and dPER is medium then dINVP is notifying
5. if dINV is medium and dPER is low then dINVP is inactive

 
Fig. 9. Fuzzy inference rules 
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Fig.10. The dINVP behavior with respect to dINV, and dPER metrics 
 
Figure 10 depicts the behavior of the dINVP with respect to 

certain values of dINV and dPER. Specifically, note that when 
dPER ranges from 0 to 1 and dINV fluctuates between the value of 
0.65 and 0.85 (i.e., the ‘notification’ boundary), the dINVP 
assumes a peak value. This means that, the system appears to be 
more certain about decision making over the three options for a 
specific task execution. In addition, it is obvious that, the 
number of B (notifications) has now noticeably decreased with 
respect to the A and C numbers. One can conclude that the 

system is capable of performing a specific task, or not, without 
having to disturb the user.  

 
VII EXPERIMENT & SYSTEM EVALUATION 

 
We have evaluated the two system versions S1 and S2, by 

using abstract and specific ontologies in order to model the 
local contexts for the user situations. Specifically, to avoid 
defining ontologies from the beginning, we choose to adopt 
upper ontologies to ensure generality and expressiveness for the 
four local contexts of the situation context (Section III). We use 
the Upper Cyc Ontology2 from the IEEE SUO Working Group 
in order to model concepts, such as situation. We extend the 
Cyc spatial ontology by defining location concepts such as 
interior building areas, and meeting rooms. We, also, choose to 
adopt temporal concepts included in the DAML-Time / Time-
Entry ontology3 , import concepts related to user profile 
(agenda entries, preferences) included in the FOAF4 and the 
GUMO [18] ontologies, and, model the artifact context by 
using  terms from the FIPA5 device ontology. In addition, our 
implementation consists of four reasoning engines in order to 
infer situational context. Specifically, we use rules for 
reasoning based on the DAML-Time axioms and Allen’s [19] 
temporal interval calculus, rules for interpreting user spatial 
context constructed by the SEP mereologic operators [20], the 
RACER-DL inference engine [16] in order to reason about 
compatible situations, and, finally, the Fuzzy-JESS6 rule engine 
in order to reason about the action determination rules (Section 
V).  

S1 makes decisions based only on the dINV metric, while, S2 
makes decisions taking into account the fuzzy inference rules 
related to dINV and dPER metrics. We carried out 200 
experiments, in which the user selected the ‘do not 
disturb again’ option in a random way. Table III 
illustrates two decision metrics, in order to examine the 
behavior of systems S1 and S2. Specifically, we discuss two 
possible pieces of evidence. The first one concerns the S1 
decision to notify the user, whilst, the S2 decides not to perform 
the task in order to avoid disturbing the user. According to 
Table III, S2 turns out to be certain about deciding not to carry 
out that task. Actually, the number of the notification messages, 
sent by the S1 to the user, appears to be increased by a 
percentage of 21.5%. In the second case, S2 seems to act in a 
more pervasive way than S1, since the former system takes 
action instead of notifying the user. Finally, in 64 cases (out of 
200), the user does not receive a notification message from S2. 
This implies that S1 is less pervasive than S2 by a proportion of 
32%.   

Figure 11 depicts the distribution of the dINV values 
throughout several experiments as far as the S1 system is 
concerned. Moreover, Figure 12 illustrates the corresponding 

 
2 http://www.opencyc.org/ 
3 http://www.cs.rochester.edu/~ferguson/daml/ 
4 http://xmlns.com/foaf/0.1/ 
5 http://www.fipa.org/specs/fipa00086/ 
6 http://herzberg.ca.sandia.gov/jess/ 



distribution of the dINVP values, which refer to system S2. One 
can observe the uniformity of the dINV distribution over the 
three regions, which correspond to the ‘take no action’, 
‘notification’, and ‘take action’ options. On the 
other hand, the dINVP distribution appears to be dense within 
areas related to ‘take no action’ and ‘take action’ 
options, resulting to a sparse ‘notification’ region.  
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Fig.11. Distribution of the dINV values 
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Fig.12. Distribution of the dINV and dINVP values 

 
VIII RELATED WORK 

 
Many situation models [21, 22] appear in the situation 

awareness literature. Certain models are capable of reasoning 
about situation knowledge. Using prepositional logics, the 
authors in [23] describe situations as concepts, consider the 
compatibility relations among situations, and, apply rules in 
order to infer the situation of an entity. The authors in [24] 
reason about consistent situations with respect to situation 
calculus axioms. In addition, in [25] the authors discussed 
about core ontologies representing situations, but with lack of 
enhanced semantics, thus, restricted knowledge reasoning. Such 
models focus on default reasoning that results in a crisp 
subsumption of unclassified situations. Furthermore, the 

authors in [26] modeled the user context as situations. They 
proposed a method to retrieve such situational knowledge by 
applying a dynamically logical matching method against system 
and user expectations related to current/future situations. 
Situation conceptual modeling has been, also, attempted by 
several information models, especially in the era of situation 
awareness and situation calculus as discussed by the authors in 
[27]. Significant work related to conceptual DL situational 
modeling and reasoning has been proposed by the authors in 
[28]. Finally, the authors in [30] deal with situational context 
recognition through data fusion techniques.  

 
TABLE  III. SYSTEM DECISION METRICS 

S1 Decision S2 Decision 

Number of 
occurrences 

(out of 
200) 

Percentage 

‘Notification’ ‘Take no action’ 43 21.5% 

 

‘Notification’ ‘Take action’ 21 10.5% 
Total  64 32% 

IX. CONCLUSION  
It is well-known that knowledge related to situations cannot 

always lead to crisp subsumptions, due to its potential 
vagueness. In this paper, we propose user context modeling 
through a situation aware approach. Moreover, the developed 
system approximately infers the current user situation, since the 
user context is usually inexact or uncertain. Approximate 
reasoning over situational contexts is very important in order to 
measure such uncertainty. The proposed system deals with 
imprecise situation reasoning based on contextual similarity 
measures. We also define two metrics, dINV and dPER, which 
refer to the degree of user situation involvement and system 
pervasiveness, respectively. Furthermore, the two versions of 
the proposed system, S1 and S2, use the aforementioned metrics 
in order to act as pervasively as possible. S1 deals with the 
current user situation, whilst, S2 extends the former system 
functionality by taking into account the user historical context. 
We adopted fuzzy inference rules to enable both systems to 
decide whether to perform a specific task based on the current 
user situation. Finally, S1 and S2 system behavior is evaluated 
through experiments. Experiment results demonstrate that S2 
behaves in a more pervasive way than S1 in decision making, 
since the former takes into consideration the user feedback.  
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