
Hindawi Publishing Corporation
EURASIP Journal on Wireless Communications and Networking
Volume 2006, Article ID 78259, Pages 1–18
DOI 10.1155/WCN/2006/78259

Integrating a Trust Framework with a Distributed Certificate
Validation Scheme for MANETs

Giannis F. Marias, Konstantinos Papapanagiotou, Vassileios Tsetsos,
Odysseas Sekkas, and Panagiotis Georgiadis

Department of Informatics and Telecommunications, University of Athens, Panepistimiopolis, Ilissia, Athens 15784, Greece

Received 1 October 2005; Revised 5 May 2006; Accepted 17 May 2006

Many trust establishment solutions in mobile ad hoc networks (MANETs) rely on public key certificates. Therefore, they should
be accompanied by an efficient mechanism for certificate revocation and validation. Ad hoc distributed OCSP for trust (ADOPT)
is a lightweight, distributed, on-demand scheme based on cached OCSP responses, which provides certificate status information
to the nodes of a MANET. In this paper we discuss the ADOPT scheme and issues on its deployment over MANETs. We present
some possible threats to ADOPT and suggest the use of a trust assessment and establishment framework, named ad hoc trust
framework (ATF), to support ADOPT’s robustness and efficiency. ADOPT is deployed as a trust-aware application that provides
feedback to ATF, which calculates the trustworthiness of the peer nodes’ functions and helps ADOPT to improve its performance
by rapidly locating valid certificate status information. Moreover, we introduce the TrustSpan algorithm to reduce the overhead
that ATF produces, and the TrustPath algorithm to identify and use trusted routes for propagating sensitive information, such
as third parties’ accusations. Simulation results show that ATF adds limited overhead compared to its efficiency in detecting and
isolating malicious and selfish nodes. ADOPT’s reliability is increased, since it can rapidly locate a legitimate response by using
information provided by ATF.

Copyright © 2006 Giannis F. Marias et al. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.

1. INTRODUCTION

Mobile ad hoc networks (MANETs) are dynamically con-
figured, multihop wireless networks with varying topology.
Mobile nodes in such networks are continuously associated
or disassociated with each other, according to their topolog-
ical arrangements. Thus, the network topology varies with
time due to the ataxic locomotion of the participating nodes.
In such a dynamic environment, cooperation between nodes
is essential for the network’s well-being. In order to enforce
cooperation, adjacent nodes should build up trust with time.
Such trust establishment procedure can improve security,
connectivity, and quality of service in the network, and, thus,
enhance its performance. Applications in a MANET can take
advantage of such trust relationships, by exploiting them to
improve their performance and efficiency.

MANETs are dynamic and open: nodes join or leave the
network at any time, are constantly moving in any direc-
tion, while the electromagnetic spectrum, being the transfer
medium, is considered publicly available. In such a context
selfish and malicious nodes are likely to appear. Selfish nodes
are characterized by their reluctance to spending resources to

maximize social welfare (e.g., by forwarding packets that are
not destined for them). Conversely, they demand from other
nodes to exploit resources for their profit. Malicious nodes
attack directly the network’s robustness and the nodes’ avail-
ability through common techniques such as denial of service
(DoS), flooding and sleep deprivation torture [1]. Hence, se-
curity schemes that are based on symmetric or public keys
are considered essential for the establishment of authenticity,
confidentiality, and integrity services in MANETs, being fo-
cused on the avoidance of the malicious nodes’ actions. On
the other hand, if the primary goal is the maximization of
the network’s availability, robustness, and overall through-
put, then cooperation enforcement schemes fit better. They
mainly encourage the collaboration between the nodes of a
MANET, trying to overcome egoistic behaviors that jeopar-
dize the network’s operation.

In order to prevent malicious attacks, several proposals
based on the usage of public key cryptography and digital
certificates signed by certificate authorities (CA) have been
made, such as the threshold cryptography schemes proposed
in [2–4]. For public key certificates a scheme for retrieving
CSI (certificate status information) is essential. In [5] we

2 EURASIP Journal on Wireless Communications and Networking

have proposed a distributed scheme based on OCSP (on-
line certificate status protocol) called ADOPT, that can pro-
vide on demand up-to-date CSI to any node in a MANET.
ADOPT is based on the concept of distributing and caching
preissued and presigned OCSP responses in selected nodes
of the network. Its goal is to provide an efficient, lightweight
and always-available scheme for determining the status of
certificates within a MANET.

On the other hand, when the availability of nodes and
network, and the overall throughput are required, then the
cooperation enforcement techniques might fit better. These
models face mainly the question of encouragement of col-
laboration between the nodes of a MANET so that the right
implementation of routing and forwarding tasks is achieved.
In [6] we have proposed the ad hoc trust framework (ATF),
a generic, distributed, framework for self-evolving trust es-
tablishment. ATF incorporates self-evidences, recommen-
dations, subjective judgment and historical evidences to
continuously evaluate the trust level of peers. To capture
such semantics, ATF is armed with a novel trust computa-
tion model. The model consolidates user’s natural behavior,
through a trust policy. ATF does not use any symmetric or
public cryptography for trust building, or message authenti-
cations schemes. Thus, it avoids complex computations and
the expenditure of resources (power, CPU, and memory). In
that sense, ATF is usable in different types of distributed, or
peer systems (ad hoc networks, pervasive computing devices,
autonomic systems), although in this work it is primarily ex-
ploited in the context of ad hoc networking.

In this paper we propose the integration of these two
frameworks, namely ADOPT and ATF, in order to demon-
strate how ATF can be used to increase ADOPT’s efficiency.
ATF, being a general purpose, self-evolving trust scheme can
support trust aware applications. Such an application could
take advantage of trust values assigned by ATF and use them
to improve its efficiency. In ADOPT’s case, as we will see in
the following sections, ATF can be used to prevent attacks
that could flood the MANET with useless messages. Threats
to ADOPT, not only affect the usage of this service, but may
also cause exhaustion of node’s resources. Hence, ADOPT
could rely on ATF for improving its robustness. ATF provides
trust information for specific nodes, so that selfish and ma-
licious nodes can be detected and isolated as soon as possi-
ble. Additionally, ATF can disseminate trust metrics concern-
ing the behavior of nodes when executing ADOPT, providing
more accurate trust information for ADOPT, but also assess-
ing the trustworthiness of a node in a MANET in a more
complete way.

The structure of this paper is as follows. In Section 2
we present and explain the functionality of ADOPT. Details
of proposed caching alternatives are also given as well as
some characteristics of the ADOPT protocol and messages.
In Section 3 we describe ATF, its architecture, how it man-
ages trust and reputations using a specified trust policy. Fur-
thermore, the details of the TrustSpan algorithm are given.
Subsequently, in Section 4 we analyze the threats and attacks
that ADOPT may have to face. In addition, we describe the
reasons that led us into integrating ADOPT and ATF and the

specifics of this integration. Moreover, the TrustPath algo-
rithm and Cerberus function are analyzed. In Section 5 we
discuss details of this integration, providing and assessing
several simulation results. Finally, we provide some examples
of related work and conclude with our remarks and sugges-
tions for future research.

2. ADOPT

ADOPT [5] is an on-demand, distributed OCSP scheme,
based on cached OCSP responses, and designed in such a
way, so that it can be successfully and efficiently deployed in
MANETs. Its purpose is to create a fast, light, distributed, and
always available certificate revocation protocol for MANETs.

2.1. ADOPT architecture

OCSP is a simple protocol involving requests and responses
that provide the current status of one or more certificates. A
client can send a request to a server (usually called OCSP re-
sponder) asking for information on the status of one or more
certificates. This request can be digitally signed and contains
a reference to the queried certificate(s) (certID). The server
responds with a signed message that contains the status of
the referenced certificate(s). The response message also con-
tains time and date information. OCSP responses are always
digitally signed either by the CA, a trusted or an authorized
responder.

We distinguish three different kinds of nodes in ADOPT:
ServerNodes, CachingNodes, and ClientNodes. ClientNodes re-
quest the status of a certificate by broadcasting a message
similar to an OCSP request. CachingNodes cache preissued
and presigned OCSP responses and act as OCSP responders
by providing such responses when needed. ServerNodes are
nodes that announce the revocation status of the certificates,
such as OCSP responders. They issue and sign certificate sta-
tus responses which are then stored in CachingNodes.

A ClientNode wishing to determine the status of a cer-
tificate forms an OCSP-like request message. In traditional
OCSP, this message should then be sent to an OCSP re-
sponder, which would be identified by the authorityInfoAc-
cess extension [7] of the X.509 certificate. However, MANETs
are highly dynamic in nature, as nodes may enter or leave
the network anytime and may be moving constantly. There-
fore, a DSR-like [8] mechanism has been proposed [5], more
appropriate for such environments. Thus, the request mes-
sage is broadcasted by the ClientNode. Intermediate nodes
that receive the message rebroadcast it if they do not act as
CachingNodes. On the other hand, CachingNodes examine
their cache for a preissued response corresponding to the re-
quested certificate. If such a response is found, it is forwarded
back to the ClientNode; else the request message is rebroad-
casted. Similarly, if the message reaches a ServerNode, a cor-
responding response is issued.

Clearly, a request message may be circulating in the
MANET without ever getting a corresponding response. To
avoid this problem, ADOPT proposes a solution [5] similar
to the one proposed for resolving routing loops in DSR [8].

Giannis F. Marias et al. 3

ADOPT request message (AReq)

OCSP request fields

CertID

IssuerNameHash
IssuerKeyHash
SerialNumber

ADOPT extensions

TTL
Update time

ADOPT response message (ARes)

OCSP response fields

OCSPResponseStatus
ResponderID
producedAt

CertID

IssuerNameHash

IssuerKeyHash

SerialNumber

CertStatus
ThisUpdate
NextUpdate

Figure 1: ADOPT messages.

In detail, the ClientNode determines the maximum number
of hops that the request message is allowed to travel through.
This TTL (time-to-live) parameter is included in the request
message. Every intermediate node that receives the message
decreases TTL by one, until the maximum number of hops is
reached and the message is dropped.

2.2. ADOPT protocol

The main advantage of ADOPT lies in the fact that the nodes
of a MANET can receive up-to-date CSI anytime, using a dis-
tributed scheme that ensures the availability of this service.
In addition, this information is delivered with a minimum
cost in terms of both network and node resources. As a mat-
ter of fact, OCSP messages are rather small in size [9] and
CachingNodes do not need to resign cached information sta-
tus. The authenticity and integrity of the responses can be
verified by the OCSP responder’s signature on the response.
However, the freshness of CSI depends on the freshness of
the cached responses, and thus, on the mechanism used for
cache updating.

OCSP requests reference the queried certificate using a
hash of the issuer’s name and key as well as the serial number
of the certificate. These fields uniquely identify a certificate
[10]. OCSP responses include three time parameters, critical
to OCSP’s operation. The first one, indicated by the field pro-
ducedAt, denotes the time when the OCSP response was is-
sued. Two additional parameters specify the validity interval
of the OCSP response. In detail, thisUpdate indicates when
revocation information regarding the queried certificate was
last obtained, while nextUpdate is the time when the respon-
der is expected to have new information concerning this cer-
tificate. The most important fields contained in an ADOPT
request (AReq) and response message (ARes) can be seen in
Figure 1.

ARes freshness can be of a great importance to ClientN-
odes as some critical user applications may require up-to-
date responses. ADOPT [5] introduces a parameter (update-
Time) in the request message that allows a ClientNode to

specify how fresh the expected response should be. In such
terms, if a CachingNode does not have a fresh enough re-
sponse, it rebroadcasts or drops the request, depending on
the TTL parameter.

Ideally, a CachingNode should deliver the most recently
issued cached response. Nevertheless, it is possible that its
cache is not updated. An efficient mechanism for cache up-
dating should be in place to ensure that CachingNodes get the
most updated responses. ADOPT suggests that CachingN-
odes get updated directly from an OCSP responder (ServerN-
ode), either periodically or on demand. Even when commu-
nication with ServerNodes occurs using out-of-band means
(e.g., through a GSM or GPRS bridge), it is possible that these
OCSP responders may not be always available. Thus, ADOPT
also suggests that CachingNodes can eavesdrop on messages
that they forward in order to detect ARes designated for other
nodes but also useful to them, for updating their cache.

Efficient cache placement policies ensure that there is no
unwanted flooding of OCSP requests in the MANET. Cached
ARes may be placed in strategic elements within a MANET,
for example, in high mobility nodes [11]. Each node in
the network should be able to reach a CachingNode with a
cached response to his request in a few hops, so that AReq do
not have to travel far in the network. Moreover, each node
chooses for itself a cache update and deletion policy. Its de-
cision depends on its position within the MANET and its re-
sources in terms of processing power, memory capacity, and
power autonomy. Thus, in ADOPT, a node may choose be-
tween a greedy or selective caching policy [11] as follows.

(i) Greedy caching state. The node caches every ARes that
passes through it.

(ii) Selective caching state. The node caches a response af-
ter m appearances, with m being the popularity index
of that response.

Overall, the caching strategies ensure that network re-
sources are wisely spent in legitimate protocol runs, initiated
by good-willing entities. Some corresponding time thresh-
olds have been proposed in [11]. ADOPT’s TTL and waiting

4 EURASIP Journal on Wireless Communications and Networking

window (WW) parameters ensure that request propagation
stops once a response has been located. A ClientNode has to
set the TTL parameter, which specifies the maximum num-
ber of nodes that the request can pass through. If a response
is not found within the specified number of nodes, the re-
quest will be dropped. The ClientNode will be able to resend
the same request with a different TTL parameter, depend-
ing on the WW. The waiting window parameter indicates the
time a ClientNode has to wait until receiving an ARes and its
calculation is based on a node’s observations of network de-
lays. Evidently, a legitimate request message will only reach
a specific number of hosts, without forming any loops, thus
consuming only the necessary network resources.

3. ATF

ATF uses a layered architecture and consists of the following
components: trust sensors (TS), trust builder (TB), and repu-
tation manager (RM). The proposed framework is fully dis-
tributed. Every node hosts these components and provides a
number of routine functions (services), such as packet for-
warding, routing, and so forth. Moreover, every node im-
plements a special function, called recommendation function
(RF). This is a simple service that provides recommendations
to third parties, upon request.

3.1. ATF architecture components

ATF follows [12] for the definition of the reputation of a
node’s function: reputation is expressed through the triple
{nodeid, function, trust value}. Thus, the reputation of a
function f of node n is defined as R(n, f) = {n, f ,TVn, f },
where TVn· f is the trust value (TV) for the function f of
node n.

In the context of ATF, a detector is a node that directly
monitors the behaviour of another node’s functions, called
target. In such a case the detector captures direct evidence
(DE) about the trustworthiness of a particular function of the
target. A requestor is a node that asks for recommendations.
A recommender issues recommendation responses (upon re-
quest).

In general, a trust building mechanism could be laid out
based on two diverse architectural directions. The first relies
on an on-demand, and the second on an event-driven rep-
utation mechanism. The difference between these two ap-
proaches lies in the way that nodes are being informed for
changes in trust values (TVs). The ATF architecture is capable
of supporting on-demand recommendations. The ATF archi-
tecture consists of the following modules (see Figure 2).

Trust sensors (TS)

The majority of the proposed reputation systems agree that
the most significant factor for trust building is the evidence.
In ATF, for every function offered by an adjacent node there
is a trust sensor (TS) that monitors its execution/operation.
A TS is an abstraction of common physical sensors: trans-
lates a (physical) phenomenon in a machine interpretable

Trust policy

Trust builder

Trust matrix

TS1 TS2 � � � RFTS Reputation manager

Network and application stack

Figure 2: ATF Architecture.

form. In our case this phenomenon is the trustworthiness
of a node. A TS monitors the behaviour through real-time
measurements or statistical analysis of logs, and compares it
to a predefined reference attitude (i.e., expected functional-
ity). In that sense, the ATF scheme uses TSs to assist a node
in defining the credibility of other collaborating peers. A TS
maps the captured evidence (i.e., observation) to a numerical
value and forwards this value to the trust builder for further
trust computation.

Trust builder (TB)

This component computes the TV of other nodes’ func-
tions. A TV value is distinct for each discrete function per
node. A node, for example, may be trustworthy to perform
packet forwarding, but unreliable to contribute on routing.
TV computation depends on several factors, such as direct
evidence, recommendations, historical data, and subjective
criteria. Each node follows its own trust policy, which spec-
ifies the user’s subjectivity (e.g., distrustful, deceivable) and
the weights.

Reputation manager (RM)

The RM’s main role is to provide recommendations from
third parties to the TB in order for the latter to compute the
TVs. TB requests recommendations for a target when it has
inadequate information for it. Next, RM selects the recom-
menders in order to obtain requested values. These should be
as trusted as possible and close enough so as to limit com-
munication overheads. For that purpose, the RM takes into
account the TVs of the recommenders’ recommendation func-
tion.

Recommendation function trust sensor (RFTS)

This special trust sensor evaluates the trustworthiness of a
node regarding its recommendation function. RFTS, like any
other TS, categorizes a direct observation as success or fail-
ure. The RM of a detector asks from recommenders the recom-
mendations that correspond to a specific function of a target.
A recommendation is returned only when the recommender
has adequate DE about the target, so as to reduce rumour
spreading.

Giannis F. Marias et al. 5

3.2. Trust computation in ATF

ATF incorporates several user-defined weights and time-
dependent parameters, defined separately for each entity in
its trust policy (TP). Time-dependence is important, since it
allows the modeling of temporal trust strategies, which can
be followed by the participating nodes. In the context of ATF,
time is discrete and is measured through counting successful
interactions.

The majority of the trust computation approaches ac-
knowledge that for the evaluation of TV two main compo-
nents should be taken into consideration: the DE and the
recommendations (RECs) from third parties. The DE is cal-
culated from the TSs’ feedbacks and is useful for evaluation
of adjacent nodes’ functionality. RECs are communicated be-
tween the entities participating in the trust network, accord-
ing to a reputation dissemination protocol, implemented
in RM. Many sociocognitive approaches for trust, for ex-
ample, [13], dictate that trust computation should also in-
clude a subjective component. Thus, a subjective-factor com-
ponent (SUB) is introduced in the trust computation model.
This time-dependent component enables time-variant trust-
ing behaviour of peers. SUB is defined by the TP of each indi-
vidual node, and can model typical trust characters, such as
unwary, suspicious, disbelieving, and so forth. This compo-
nent provides flexibility in the trust strategy of a user, with-
out imposing significant complexity in the overall trust com-
putation. History is an additional concept that has drawn at-
tention in the trust community. Several researchers use his-
tory as an implicit component in the trust computation, as
in [14–16]. In ATF, a significant weight is assigned in the cur-
rent observation. This enables a peer entity to rapidly identify
when a target starts to misbehave. Additionally, the history
of the observations that will be considered for the evaluation
of a trust value of a target, when a new observation is pro-
duced, depends on the subjective behaviour of the requestor.
Thus, a distrustful peer entity might need past observations,
whilst a deceivable peer entity might need only the newer
ones. Thus, when a new observation (i.e., TS(n,f)) occurs, a
distrustful entity takes into account the history h1 of the di-
rect evidences, as seen in Figure 3, whilst a deceivable entity
takes into account the history h2.

Thus, for each new observation or recommendation (i.e.,
newvalue) the following equation is used to relate historical
data with current observations (1):

NewValuen, f (t) = w ∗ CurrentValuen, f

+ (1−w)
H∑

i=1

NewValuen, f (t − i)
/
H.

(1)

For simplicity we write NewValue n, f (t) = WAH(n, f , t)
to denote the weighted average over the last H data and the
new value recorded at time t. According to the analysis in
[6], moderate values of w (e.g., 0.2) ensure that the calcu-
lated values belong to a range that is not deviated from the
real behaviour. Thus, moderate values of w in (1) ensure that
the direct evidence will capture the actual behaviour of the
target, without significant deviations due to sporadic misbe-
haviors or rational errors. Additionally, the historical average

DEn, f (t � i)
TS(n, f)

h1
h2

0 0 0 1 1 0 0 1 0 1 0 1 1 1 1 1 1 1 1 1 0 0 1 1 0

t

Figure 3: Different observation windows for the assessment of the
DE trust value.

component of (1) introduces different sharpness on the esti-
mation. When only the recent observations are required (e.g.,
H = 3, corresponding to an impressionable entity) then the
DE approaches faster the minimum or maximum values, il-
lustrating sudden fluctuations. On the other hand, when the
requestor takes into account long history (e.g., H = 8, for
a disbeliever entity) then the DE approaches less rapidly the
threshold values, illustrating smooth fluctuations.

Each node maintains an N ×F trust matrix (TM), repre-
senting the TV that the entity computes per monitored func-
tion of a target, where N is the number of nodes in the net-
work, and F corresponds to the overall number of supported
functions. Each element TMn, f (1 ≤ n ≤ N and 1 ≤ f ≤ F)
refers to a specific function f of a particular node n, and it
varies with time. The formulae for TM and TV are

TV ′ ≡TV ′(n, f , t)=(a∗DEn, f +b∗RECn, f
)∗ SUBn, f (t),

TV(n, f , t) = TV ′ · u(1− TV ′) + u(TV ′ − 1),

TM ≡ (TMn, f
)
, TMn, f = TV(n, f , t) ∈ [0, 1],

(2)

where, DEn, f ∈[0, 1], RECn, f ∈[0, 1], and SUBn, f (t) ∈ [0, 2],
and, thus, TV’ ∈ [0, 2]. The parameters a and b (see (2)) are
step increasing and decreasing functions. In order to map
the TV values within the [0,1] interval we use a unit step
function u(t) (see (3)). The range of TV(n,f,t) is [0,1], where
0 means that the detector distrusts a target n for a specific
function f , and 1 means that it fully trusts n for f .

u(t) =

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0, t < 0,
1
2

, t = 0,

1, t > 0.

(3)

DEn f is the DE for a target n and its function f , as ob-
served by the corresponding TS of the detector. An N×F ma-
trix DE, stored in every node, is defined as DE ≡ (DEn, f) ∈
[0, 1], where the matrix elements DEn, f are computed ac-
cording to (1), as follows:

DEn, f (t) =WAH(n, f , t),

TS(n, f) ∈ {0, 1}, TS(n, f) ∈ {0, 1}. (4)

6 EURASIP Journal on Wireless Communications and Networking

Table 1: The parameters of the trust policy.

Parameter Semantics

MI The minimum interactions required for being confident about the TV of a target

a The impact (weight) of the DE on the TV (0 ≤ a ≤ 1, a + b = 1), in (2)

b The impact (weight) of the REC on the TV (0 ≤ b ≤ 1, a + b = 1), in (2)

w The weight of history (2)

TTH(RF) The minimum allowable TVRF assessed to a node in order to be a recommender

HFI
Honourable friend index is the minimum number of trusted recommenders,
required to be consulted by a requestor to reliably evaluate the trustworthiness
of an unclassified target

The lower value (i.e., 0) denotes failure, while the higher
(i.e., 1) denotes success. The coefficients w1 and w2 adjust the
weights assigned to recent and historical DE values, respec-
tively. RECn, f stands for the aggregated recommendations we
have for the function f on node n from third parties. The
SUB component of the TV computation formula incorpo-
rates the node’s subjectivity. This subjectivity is a key differ-
entiator between the various nodes and stems from the so-
ciocognitive approaches to trust modeling [17]. SUB is an
N × F matrix with elements in the { f : T → [0, 2]} do-
main. Thus, its elements are time-functions. The range [0,2]
allows the detector to distrust (i.e., value 0) the target, trust
it (i.e., value 1), be enthusiastic about the target (i.e., value
2) or develop any other intermediate form of subjective trust
strategy. We have chosen the value 2 as an upper bound to
allow enthusiastic entity but not to such a degree that would
endanger the network’s rationality. Thus, we might consider
nodes with diverse trust strategies, but we want to restrict the
deviation of this diversity. An example SUB time-function
could be defined as

SUBn, f (t) = u(t − 2). (5)

This function indicates that no matter what DEs or RECs
a requestor has for a function of a target (n, f), it will not
trust the latter until two successful (positive) direct interac-
tions have been observed. In case the aforementioned defined
SUB component is used indiscriminately for all targets and
provided functions, it will be identical for all the elements of
the detector’s SUB matrix. The set of the SUB functions is de-
fined in the TP and it can be adjusted depending on the target
and the monitored function. However, in practice, it is highly
unlikely that a node will have N ×F different SUB functions.
Instead, a detector will usually use identical SUB function for
every target or every function.

3.3. Trust policy

For each node, a TP defines the functionality of its RM and
TB. A TP captures the conceptual subjective behaviour of
the entity (e.g., end-users). The parameters of the TP are
summarized in Table 1. The parameter HFI is used by the

proposed RM module and its application is described in the
following section.

The parameters a and b (see (2)) are step increasing and
decreasing functions on MI. This policy was chosen because
when a detector realizes the existence of a newcomer only
the recommendations of the trusted recommenders should be
used (high values of parameter b). Thus, in the initial phase
the RECs are essential. With time, the DEs become more im-
portant, and this happens only when the MI value is ex-
ceeded.

3.4. Trusted recommenders

As illustrated in (2) a requestor is based on recommenda-
tions to compute the TV of other nodes. However, trusted
recommenders (i.e., nodes illustrating a high TV value for the
RF) should be conducted to provide these recommendations.
This will minimize the effects of rumour spreading and avoid
potential DoS attacks [18]. Moreover, the selected recom-
menders should be as close as possible to the requestor so as
to have limited communications overhead. The work in [19]
ranks routes according to security metrics (e.g., reputation
of nodes in the path), and avoids paths containing malicious
nodes. Path ranking is also proposed in [20] to mitigate the
effects of routing misbehavior. In [6] we have introduced a
mechanism, called TrustSpan that is used by the RM of a re-
questor to consult only trusted nodes whenever recommen-
dations for the evaluation of newcomer nodes’ trustworthi-
ness are required.

We consider as newcomer the node for which the re-
questor has no or inadequate experience (i.e., zero or few
DEs). When a newcomer becomes adjacent to a requestor, the
latter does not know a priori whether it is trustworthy and,
therefore, it executes TrustSpan in order to identify the near-
est trusted recommenders. A requestor characterizes a node
as a trusted recommender if the TV for its RF is higher than
TTH(RF), defined in trust policy. We remind here that the
RF is monitored and evaluated, just like any other function,
via the RFTS sensor. The TrustSpan procedure is presented
in Algorithm 1. The distance matrix (DM) stores the hop-
distance of known nodes from the requestor.

Giannis F. Marias et al. 7

Inputs:

int HFI ; -- Honorable Friend Index

int DM[]; -- The distance of the recommender from the requestor, 1, . . . ,M

int TM[][]; -- Trust Matrix, M ×N

int TTH(RF); -- The minimum TVRF of the recommender in order to be trusted

Output:

int trusted IDs[] -- IDs of nearest, HFI trusted recommenders

procedure TrustSpan (){
int TVRF[], NodeID[];

int Number Of Trusted Nodes For RF;

for (j = 0; j < Number Of Nodes; j + +)

if (TM[j][RF] ≥ TTH(RF)) { -- Trust Value for the RF for the recommender j

NodeID[j] = j;

Number Of Trusted Nodes For RF ++;

}
if (Number Of Trusted Nodes For RF ≤HFI)

return (NodeID[]);

order(DM[], NodeID[]); -- orders NodeID[] according to DM[]

for (j = 0; j < HFI; j + +)

trusted IDs[j] = NodeID[j];

return trusted Ids[];

}

Algorithm 1: TrustSpan algorithm.

TrustSpan tries to minimize both the delay in the prop-
agation of the requested recommendations and the commu-
nication overhead. It is invoked only when a node has inad-
equate number of direct interactions with a newcomer. This
number is defined in TP through the parameter MI. MI also
affects which nodes reply to recommendation requests. In
particular, the recommenders selected by TrustSpan that have
less than MI direct interactions with a target will not give
recommendations about it. When the TrustSpan returns the
IDs of the nearest trusted recommenders, the RM asks for rec-
ommendations (through unicasting) from the correspond-
ing RMs of the trusted recommenders. When the required rec-
ommendations arrive or a respective timeout expires, the re-
questor’s RM forwards the incoming information to the TB
where the actual trust computation takes place.

4. ADOPT OVER ATF: INTEGRATION APPROACH

In this section we show how ADOPT can take advantage of
ATF in order to ensure the availability and reliability of its
service. ATF can also include TVs that are calculated accord-
ing to a node’s behaviour when executing ADOPT, regardless
if it is a ClientNode, a CachingNode, or simply an interme-
diate node forwarding ADOPT messages. Furthermore, we
will examine how ATF and ADOPT can be integrated using
a trust plane and also suggest some functions that will opti-
mize the performance of the integration approach.

4.1. Attacks and threats against ADOPT

The presence of malicious or selfish nodes is substantial, and
should be considered when providing CSI. In this section
we analyze how selfishness and malicious behavior can be
dealt with using ATF as a trust component. However, we do
not take into account selfish or malicious behaviours against
the robustness of other protocol layers, such as route request
flooding, or routing table fabrication, materialized in the net-
work layer of a MANET, since we assume that these attacks
will be prevented on the corresponding layer of the stack.
We only discuss selfishness and malicious behaviour on the
ADOPT layer. We first consider a malicious node that ei-
ther initiates flooding attacks to cause serious disruption to
ADOPT, or fabricates the valid status information of a cer-
tificate.

AReq flooding

A malicious node starts flooding the network with an in-
valid AReq, that is, asking for the status of a certificate that
does not exist. This can be easily achieved by including a
random certificate serial number in an AReq. Intermediate
nodes receiving this request will look for a corresponding re-
sponse in their caches and, after finding none, forward the re-
quest. This way, CachingNodes consume resources to look for
a cached response that does not even exist. Moreover, a more

8 EURASIP Journal on Wireless Communications and Networking

important issue is that the network will be flooded with in-
valid requests that can never be replied. Assigning a high TTL
to the invalid requests can easily scale this attack. Such re-
quests will not be withdrawn, as a corresponding response
will never be located. As a result, these requests will be circu-
lated in the entire network, reserving the scarce bandwidth
and resources.

ARes flooding

This similar type of attack might cause more damage as far
as robustness is concerned. In an attempt to find an updated
response as quickly as possible, ADOPT broadcasts AReqs,
which are propagated in the network. Malicious nodes can
take advantage of this, by issuing and propagating false ARes.
Such nodes can be acting as CachingNodes. In such a case
they keep in their repository a variety of cached ARes, issued
by various OCSP responders. These ARes might be valid, but
probably are out-of-date, or they correspond to different se-
rial numbers from the ones which a status was requested for.
Each issued ARes will traverse the reverse path, until it is dis-
carded as invalid by the requestor ClientNode.

ARes fabrication

Malicious caching nodes can fabricate responses in order to
trick ClientNodes into acting as if they were valid. In detail,
a malicious CachingNode can randomly pick a valid cached
response from its repository and alter the referenced certifi-
cate in order to match the queried one. Alternatively it can
keep only aged responses that, for example, make a currently
revoked certificate appear as valid. Actually, such responses
are valid, but out-of-date. In any case, a ClientNode receiv-
ing a cached ARes will first try to verify the signature on it.
If the response has been altered by a malicious node, the sig-
nature will be found invalid and the ClientNode will drop the
response and broadcast a second request message, probably
with a higher TTL, when the WW will expire. In case of an
aged response, the signature will be found valid and it is left
to the ClientNode to decide if it will look for a fresher sta-
tus or regard it as valid. Otherwise, the digital signature will
fail verification. Nevertheless, the ClientNode will have ver-
ified the signature spending its power in processing public-
key algorithms. A node flooded by such responses may soon
consume a lot of its resources in vain (i.e., without ever get-
ting a valid response). Several malicious nodes located near a
ClientNode can flood it with false responses until completely
exhausting its power, materializing a sleep deprivation tor-
ture attack [1].

A large number of malicious nodes, strategically placed
within the MANET may cause serious disruptions to ADOPT
and the network as a whole. These nodes could manage to
provide invalid responses to most request messages, before
legitimate nodes could manage to respond. This kind of at-
tack resembles to DoS attacks. The availability of ADOPT is
affected as practically valid responses cannot be delivered. In
extreme cases the nodes’ availability may be in risk too, since

if they continue to look for valid responses, they will soon
run out of resources. In addition, ADOPT’s reliability and
robustness become questionable too, as it appears unable to
operate properly.

Apart from being malicious, some nodes may be selfish as
well. Such nodes do not wish to spend their resources for the
profit of other peers, or even for the social welfare. Addition-
ally, they demand from others to use resources for their own
profit. In terms of ADOPT, selfish nodes may decide to al-
ways follow a noncaching policy. Alternatively, selfish nodes
may choose not to process request messages at all. In the lat-
ter case, they relay the AReq messages without checking their
cache for responses or reducing the TTL. Thus, a request
message will travel in the MANET more than intended. Fi-
nally, selfish nodes may decide not to forward any request or
response message. In any one of the aforementioned cases,
such nodes affect the performance of ADOPT or may even
cause disruption of the service.

4.2. Motivation

The attacks analyzed in the previous section are rather sim-
ple but if deployed on a large scale in a MANET, they could
result in network congestion and partitioning as well as sig-
nificant node resource consumption. In order to prevent and
deal with these attacks we propose the use of the ATF frame-
work as a trust component. Such a component would eval-
uate nodes’ trustworthiness according to their behaviour so
that peers could decide whether they should trust each other.
In this section we examine how the use of ATF can enhance
ADOPT’s efficiency and prevent the aforementioned attacks.
We also propose some customizations for ATF in order to
match ADOPT’s needs.

We consider here a MANET in which ATF is already de-
ployed and trust values are estimated for certain node func-
tions (e.g., packet forwarding) [6]. Even though a generic
trust framework which estimates nodes’ trust based on their
performance on fundamental functions would be useful
for any MANET application, the calculation of application-
specific TVs would increase the efficiency of the applica-
tion and of the network overall. ATF supports any trust-
aware function and application, and, thus can also support
ADOPT. A node receiving an AReq or ARes can retrieve the
TVs of the node that issued these messages from its trust ma-
trix. Then, a decision should be made, based on the retrieved
TVs, whether the originator should be trusted or not. In case
of an AReq, the message should be processed as normal if the
originator is considered trusted and, thus, the intermediate
node should seek for a cached response in his cache and act
accordingly. Similarly, an ARes should be forwarded to the
next node if the originator is considered trusted. Conversely,
if the node which issued the corresponding message should
not be trusted, the request or response should be dropped.

Using this approach AReq and ARes flooding attacks can
be successfully mitigated. A legitimate node is expected to
soon collect enough TVs in order to characterize a node as
malicious. Hence, it will ignore and drop any requests or

Giannis F. Marias et al. 9

responses that originate from such nodes. Furthermore, in
Section 4.4 we introduce optimizations in order to facilitate
the detection and isolation of misbehaving nodes. Thus, the
ARes fabrication attack is also faced, as nodes that continu-
ously fabricate invalid responses will be eventually isolated.

This approach solves the general issue of attacks to
ADOPT but may result in many false positive if TVs are not
based on the node’s behaviour while executing ADOPT, but
on other possibly routine functions. In some cases a node
may not be behaving rationally in terms of routine tasks,
but may legitimately request the status of a certificate. This
request should not be dropped by the network nodes, nor
should a request indicate an unusually high TTL parame-
ter or a very recent updateTime parameter. Such a request
might have been constructed by a node unable to find suffi-
ciently recent cached responses in CachingNodes of its neigh-
bourhood. All similar legitimate requests should be replied
as knowledge of certificate revocation status may be critical
for some applications.

A combination of general and ADOPT-specific TVs is
considered necessary for ADOPT’s efficient operation. Tak-
ing into account parameters concerning how nodes behave
when they execute ADOPT results in having a more complete
view of trust for each node. Regarding requests, an interme-
diate node receiving AReq messages should check its TTL
and updateTime parameters. If these two values are consid-
ered reasonable (e.g., low TTL and recent updateTime), the
request may be legitimate even if other trust values indicate
otherwise. Of course, the specific message may have travelled
a lot in the MANET before reaching the specific node, so that
its initially large TTL may now appear low. As a result, node
proximity should also be considered. A node’s trust builder
wishing to evaluate another node’s trust, in terms of its be-
haviour regarding AReq messages, should, thus, consider the
TTL parameter in each request message combined with the
node’s location. On the other hand, it is very hard to decide
if a queried certificate actually exists, as it is impossible for a
node to have knowledge of all issued certificates. Regarding
updateTime, values indicating a time in the future demon-
strate a possibly illegitimate request message. However, mes-
sages containing values that are near to the current time can-
not be regarded malicious by default. In such inconclusive
cases, other TVs should be also examined in order to provide
the most possible accurate result.

Concerning response messages, the following steps are
required to verify their validity:

(1) the digital signature on them should be valid,
(2) the referenced certificate should be the one that was

queried,
(3) the thisUpdate and producedAt fields should be recent

enough, while the nextUpdate field should indicate a
time in the future [10].

As we have already mentioned, signature verification requires
considerable resources and, thus, should not be performed in
every node for a large number of messages. Similarly, check-
ing the referenced certificate for every response is also im-
practical, as each node would also have to cache the corre-

sponding request message. Consequently, the only parameter
that should be considered by the trust builder is the combina-
tion of the two OCSP date fields. Nodes sending aged cached
responses should be considered suspicious for malicious be-
haviour. Likewise, messages whose producedAt or thisUpdate
values indicate a future time must have been originated from
malicious nodes.

Ideally, some trusted nodes in the MANET should be able
to perform the aforementioned tasks in order to verify re-
sponses and provide trust feedback to other nodes. ATF al-
ready supports a similar function as it introduces the no-
tion of trusted recommenders. These are nodes that have
proved their trustworthiness and provide trust recommen-
dations to other nodes on demand. In ADOPT’s case, such
nodes could verify response messages and provide recom-
mendations to nodes that suspect malicious behaviour. Nor-
mally, recommenders should be nodes with increased pro-
cessing, memory, and energy resources and thus should
be capable of performing the required cryptographic func-
tions.

A common problem in trust and reputation systems is
false accusations, where a network entity is given a wrong
classification (e.g., malicious, or selfish). Inadvertently, ATF,
and the ADOPT over ATF framework, may face such sit-
uations due to unseemly estimation of nodes’ trustworthi-
ness. To minimize false accusations, ATF relies on several
mechanisms that have been already described. Firstly, the
TrustSpan algorithm aims at filtering out recommendations
from “inexperienced” nodes in order to limit rumour spread-
ing. TrustSpan relies on the predefined RF. The value up-
date for this function is performed automatically through
the RFTS or can be triggered by explicit testing mecha-
nisms (i.e., ask nearest nodes about the trustworthiness of
a node T for which you have already a very strong evi-
dence).

Additionally, as we have already mention, the weights of
REC and DE in the TV computation depend on MI. Thus,
a node can flexibly control how much it should rely on rec-
ommenders. In general, the minimization of false depends,
among others, on the trust policy followed by each node. An
explicit evaluation of the false accusations effects as a func-
tion of possible TPs is left as future work.

4.3. Integration of trust

Trust management for MANETs raises, as happens with every
new computing paradigm, questions regarding its seamless
integration with current network protocol stacks. In particu-
lar, one should define how the introduction of trust affects
the architecture and operation of current services, in our
case of ADOPT, and identify potential difficulties or prob-
lems during such integration. In general, the following three
types of modifications are necessary for the desired integra-
tion (see also Figure 4).

(1) Introduction of a trust plane

This is a vertical plane similar to the user/control and
management planes of other networking specifications. It

10 EURASIP Journal on Wireless Communications and Networking

Application layer

Transport layer

Network layer

Link layer

Physical layer

(a)

TApplication layer

TTransport layer

TNetwork layer

TLink layer

TPhysical layer

Tr
u

st
pl

an
e

TApplication layer

TTransport layer

TNetwork layer

TLink layer

TPhysical layer

Tr
u

st
pl

an
e

Trust
protocol

(b)

Figure 4: (a) Traditional network stack. (b) Net stack elements imposed by incorporation of trust.

includes all the necessary components in order to assess trust
of third entities: sensing mechanisms, policy-driven evolu-
tion of trust, interaction history, and so forth. Trust plane
operates also as a broker since it disseminates to all other
interested layers the observations of each specific layer. For
example, it may give feedback to the networking layer (i.e.,
routing) about the physical layer operation of peer entities.

(2) Recommendation exchange through a trust protocol

Such protocol could be implemented in the application layer
and is responsible for the request and receipt of recommen-
dations (i.e., in ATF it would be part of the reputation man-
ager).

(3) Trust-aware versions of current protocols

The observations collected by the trust plane or the rec-
ommendations collected through the trust protocol should
somehow affect the operation of the network stack. This can
be only performed if the protocols support trust-driven re-
configurability.

An example of a trust-aware, self-adapted and reconfig-
urable system is the software radio. Specifically, software ra-
dio serves as a radio communication system technology that
uses software methods for the modulation and demodula-
tion of the transmitted signal. The interface to the physical
layer is no more hardware-based and fixed, but a set of inter-
faces provided by the deployed software. A straight-forward
result of a trust-aware version of the software-defined radio
is that the physical layer can be altered to any supported pro-
tocol by simple software redeployment, triggered by the trust
plane. The initial triggering may be caused by an application
that identifies poor quality of service, such as high bit error
rate. Alternatively an upper layer might demand switching to
a more secure version of the physical layer protocol, that is,
modified hopping sequences of the CDMA, possibly due to
distrusted neighbours.

The trust plane that deals with trust management issues
is distributed, and resides in each MANET node. It is similar

in nature to the knowledge plane proposed in [21]. The sim-
ilarities consist of the autonomic and distributed nature of
the planes, and the “subjective” approach the proposed con-
structs follow. The trust plane, however, imposes require-
ments, which are harder and of narrower scope, on the de-
sign. The representation and reasoning of trust entities and
relationships is strict and the operation of the whole auto-
nomic systems network is very sensitive to any weak inter-
pretation of trust.

In our case, ATF acts as the trust plane and ADOPT as
a trust-aware application. When integrating the ATF trust
plane with the ADOPT scheme, several performance mea-
surements should be considered, such as the following.

(i) The communication overhead introduced when ADO-
PT invokes the ATF component and produces on-
demand recommendation requests, and the corre-
sponding responses.

(ii) The time required by each node to identify the actual
behavior of a peer (i.e., how rapidly ATF enables peers
to identify the real TV that corresponds to an ADOPT
misbehaving node).

4.4. Optimizations: trustpath algorithm and Cerberus
function

As mentioned in Section 2.2, a ClientNode might receive
multiple ARes during a WW. During this time window, in-
valid responses might be received. From the captured re-
sponses, the ClientNode should select a valid one, which con-
tains the most recent producedAt field. This process might
introduce significant delays, since the verification of each re-
sponse requires modulo arithmetic due to the RSA signa-
tures. Thus, energy resources might be consumed unneces-
sarily. On the other hand, if the ClientNode is aware of the
identity and the trustworthiness of the nodes that are located
on the reverse path, that is, the path that each response tra-
verses, then it might drop those responses that arrive through
a distrusted path. Such mechanism aids the ClientNode to
avoid wasting time and scarce resources to verify each ARes.

Giannis F. Marias et al. 11

Definitions:

FF, CF -- Forwarding and caching function, respectively

Vc -- ClientNode id

Vr -- CachingNode id

Inputs:

Vp -- Vector of nodes, { V1, . . .,VK , Vr}, in the path traversed by the ARes

TTH(RF); -- The minimum TVRF of the recommender in order to be trusted

Output:

Boolean valid -- If the response is valid

procedure TrustPath () {
Θ[]; -- positions of unclassified nodes in Vp

TrustedRecs[]; -- Trusted Recommenders

K -- Path length

KU -- Number of unclassified nodes in Vp (i.e., nodes with no TV assigned), KU < K

KD -- Number of distrusted nodes in Vp (i.e., nodes with TV less that TTH), KD < K

if (TV(Vr, CF) < TTH(CF)) return −1; -- rule 1

for (j = 1 to K) {
if (TV(Vj, FF) < TTH(FF)) KU + +;

if (TV(Vj, FF) == UNKNOWN){
KU + +;

Θ[j] + +;

}
if (KD > 0) return −1; -- rule 2

if (KU < HFI) return −1; -- rule 3

for (j = 1 to K) -- rule 4

if ((Θ[j] > 0) && (j < MU))

return −1;

TrustedRecs[]=TrustSpan(); -- find nearest HFI trusted recommenders

for (j = 1 to K) -- rule 5

if (Θ[j] > 0) {
Ask Recommendations(); -- ask for HFI recommendation for Vj’s FF

RECv j,FF()=WAH(j, FF, t); -- calculate REC for node’s Vj FF

TV(Vj, FF) =(a∗DE (Vj, FF)+ b∗REC(Vj, FF))∗SUB (Vc, FF); -- TV for Vj’s FF

If (TV(Vj, FF) < TTH(FF))

return −1; -- Node is distrusted and rule 2 applies

}
return 1; -- rule 6

}

Algorithm 2: TrustPath algorithm.

For this reason, we have developed the TrustPath algorithm
to identify the trustworthiness of the reverse path. Trust-
Path determines if the response is originated by a legitimate
CachingNode or ServerNode and if it passes through trusted
nodes, as far as the forwarding function (FF) is concerned.
For the calculation of the reliability of paths, the TrustPath
defines the following rules concerning the admission of ARes
at the destination (i.e., ClientNode).

Rule 1. If it was produced by a malicious CachingNode, then
it is dropped (caching function, CF) in Algorithm 2.

Rule 2. If it traverses through a path that consists of at least
one distrusted node concerning the FF function, then it is
dropped.

Rule 3. If it traverses through a path that consists of many
(i.e., more than HFI) unclassified nodes concerning the
trustworthiness of the FF function, then it is dropped.

Rule 4. If it traverses through a path that consists of few un-
classified (i.e., less than HFI) concerning the trustworthiness
of the FF function, but far-off nodes, then it is dropped.

12 EURASIP Journal on Wireless Communications and Networking

Rule 5. If it traverses through a path that consists of few un-
classified (i.e., less than HFI) concerning the trustworthiness
of the FF function, but nearby nodes, then it is stored as
pending. The ClientNode asks recommendations for the un-
classified nodes, using the TrustSpan algorithm (Section 3.4).
If all nodes are reported to be trusted concerning the FF func-
tion, then the pending ARes is ranked as trusted in terms of
forwarding and candidate to be examined as valid, otherwise
is dropped.

Rule 6. If it traverses through a path that consists of trust-
worthy nodes, then it is accepted.

The TrustPath procedure is presented in Algorithm 2.
The MU is defined as the maximum tolerated hop distance
between an unclassified node and the ClientNode in order for
the latter to ask for recommendations.

Moreover, in order to further minimize the number of
ARes that a node has to evaluate, but also the total net-
work traffic overhead that ADOPT produces, we have in-
troduced the Cerberus function. Cerberus takes into account
ATF measurements concerning the trustworthiness of nodes,
and drops packets originated from or forwarded to malicious
nodes. In our case, Cerberus drops AReq forwarded to ma-
licious ServerNodes or CachingNodes. Additionally, it drops
responses initiated by malicious ServerNodes or CachingN-
odes. Its purpose is to isolate these malicious nodes from the
MANET, in order to reduce the total number of malicious
messages that circulate in it. Malicious nodes that attempt
to deploy attacks similar to those we described in Section 4
are first flagged by ATF as malevolent and then the Cerberus
function ensures that they are isolated from the MANET.
The possibility of AReq or ARes flooding is thus minimized.
Nodes that fabricate ARes are also flagged as malicious by
ATF and isolated. The TrustPath algorithm additionally en-
sures that even responses that have been forwarded by such
nodes will be ignored.

5. SIMULATION RESULTS AND ASSESSMENT

In a prototype simulation implementation of the ADOPT
and ATF schemes, we have evaluated the performance of the
integrated scheme, using the J-SIM wireless package simu-
lator [22]. We used the IEEE 802.11 protocol as MAC layer
and the AODV as an IP routing protocol. Nodes were de-
ployed in a 500 m× 500 m terrain, whereas their radio trans-
mission range was set equal to 50 m. Initially, the nodes were
distributed randomly on the terrain grid.

In the simulations we used topologies of different den-
sity, using 30, 40, and 50 nodes. Nodes’ mobility was simu-
lated according to the random waypoint mobility model [8],
in which each node moves to a randomly selected location
at a configured speed (i.e., 2 m/s) and then stops for a config-
ured pause time (i.e., 5 sec), before choosing another random
location. For our tests we used the test certificates that gave
us 115 byte AReq and 460 byte ARes, including ADOPT ex-
tensions. We assumed that one certificate was issued for each
node. Each node was assumed to support a cache of 30, 40,

and 50 OCSP entries. The number of malicious CachingN-
odes, Nc, was set to 5 and 8, and each one of them was con-
figured to alter all the cached OCSP entries. The number of
malicious ServerNodes, Ns, was set to 5 and 8, and each one of
them was configured to provide only malicious ARes for any
queried certificate. Table 2 summarizes the parameters of the
simulation environment.

Various different policies were evaluated concerning how
often nodes examine ADOPT messages in order to verify
ARes before caching them. In detail, we assumed that a node
may choose to follow a “LIGHT” policy and check only 50%
of the messages before caching them or to follow a “HARD”
policy performing all checks. Furthermore, in some scenarios
ATF’s Cerberus function was also enabled. In our simulations
we have measured the following.

(i) The communication overhead introduced when ADO-
PT invokes the ATF component and produces on-
demand recommendation requests and the corre-
sponding responses.

(ii) The average number of malicious responses that a
node receives and has to evaluate before receiving a le-
gitimate response.

(iii) The profit, in terms of discarded malicious messages,
gained from Cerberus function.

(iv) The impact of caching policies and cache size on the
delay of receiving a valid response.

During the simulations various nodes request CSI at dif-
ferent points in time. We only observe two specific nodes’
requests (IDs 10 and 20), concerning the certificates of 10
targets (with serial numbers 2, 5, 7, 9, 12, 15, 19, 22, 25, 29).

5.1. Communication overhead

The communication cost that the ADOPT produces over
ATF due to recommendations (i.e., TrustPath) is depicted in
Figure 5. For this scenario the HFI was set to 3. Addition-
ally, the MI parameter was set to 20 and 30 direct evidences.
As shown in Figure 5, the overhead decreases with time, and
eventually reaches the 20% of the actual traffic. This hap-
pens because the number of direct evidences that the pairs
of the nodes obtain increases with time, and, thus, fewer
recommendations are requested from trusted peers. Addi-
tionally, for higher MI values the overhead is higher, since
the minimum direct evidences required for being confident
about the TV of a target is higher and more recommenda-
tions are requested from trusted peers.

5.2. Detection time

Figure 6 illustrates the detection times of ATF, that is, the
number of direct evidences required for a fair node i (i =
0, . . . , 19, 30, . . . , 40) to detect a specific misbehaving node
(here for the selfish node with id = 27) in respect to the
packet forwarding function. For this scenario we have pre-
configured ten nodes to act selfishly (nodes with ids 21–
30), and only the rational nodes assess the packet forwarding

Giannis F. Marias et al. 13

Table 2: Simulation environment parameters.

Number of nodes 30, 40, or 50

Number of malicious caching nodes (Nc) 5 or 8

Number of malicious server nodes (Ns) 5 or 8

Maximum speed 2 m/s

Pause time 5 s

Terrain dimensions 500 m× 500 m

Radio transmission range 50 m

OCSP cache size (entries) 30, 40, and 50

Caching policies Greedy (GRE), selective (SEL, m = 3)

0 30 60 90 120 150 180 210 240 270 300

Time

0

20

40

60

80

100

O
ve

rh
ea

d
(%

)

MI = 30
MI = 20

ATF overhead

Figure 5: Overheads produced when ADOPT requires recommen-
dations of peers.

function of the ten selfish nodes. Each selfish node was pre-
configured to drop, without forwarding, 30% of the pack-
ets that it receives. Thus, we assume that a node has success-
fully detected selfish behaviour of node 27 when the TV that
it maintains for the packet forwarding function of node 27
reaches 0.7. In this scenario, the weight of history, w, was set
equal to 0.7 or 0.9 (1). As Figure 6 depicts, moderate values
of w (e.g., 0.7) produce low detection times, since less than 10
direct evidences are required for the recognition of the selfish
node 27. Some nodes (except for the selfish ones, 21–30) did
not manage to compute a TV for node 27 at all (e.g., nodes
2,14, and 42). This is because they are far away from node
27 and, thus, do not have an adequate number of direct evi-
dences to evaluate node’s 27 TV. Finally, nodes’ random mo-
bility patterns also result in some time detection deviations,
which have been measured for the two scenarios of Figure 6.
For example, node 20 in the second scenario (i.e., w = 0.9)
was moving using a trajectory pattern that did not come near
node 27 as the trajectory of the first scenario (i.e., w = 0.7),
and, thus, it delayed in detecting node’s 27 selfish behaviour.

5.3. Number of responses and trusted paths

Let us assume that ClientNode 20 issues AReq for the CSI that
corresponds to ten (10) targets. Figure 7 illustrates the total
number of ARes received by the ClientNode, under different

0 4 8 12 16 20 24 28 32 36 40 44 46 52

Node id

0

5
10

15
20

25
30

35
40
45

50

N
o.

of
in

te
ra

ct
io

n
s

re
qu

ir
ed

w = 0.7
w = 0.9

Detection time for
selfish node = 27

Figure 6: ATF detection time.

number of malicious caching and server nodes (values of Nc,
and Ns, respectively), when the LIGHT policy is used. The
large set of the captured responses consists of invalid (i.e.,
malicious) and valid responses. Thus, the ClientNode should
parse and verify 250 (Ns = 8), or 150 (Nc = 8), or 245
(Ns = 5), or 225 (Nc = 5) responses in order to find the
most recent and valid certificate. Such a procedure might re-
quire significant resources and time. As shown in Figure 7,
for every simulation scenario, the number of trusted paths
when ClientNode 20 issues AReq for the CSI that corresponds
to ten targets is equal to or less than 10. Thus, the ClientNode
takes advantage of the TrustPath mechanism to select the ten
(when Ns = 8, or 5, and Nc = 5) or eight (Nc = 8) valid
responses, in order to identify the most recent one. Similar
results appear when the HARD policy was used, as Figure 8
depicts. Trusted paths are much less than the received valid
and invalid responses.

As illustrated in Figure 8, the SEL strategy minimizes the
communication over-head, since fewer responses are pro-
duced by the CachingNodes and traverse the network to-
wards the ClientNode. Thus, when nodes are caching se-
lectively (using e.g., m = 3 as the popularity index) valid
responses are still found on peer entities, whilst the com-
munication cost is minimized. Additionally, from the last
two figures we observe that the malicious ServerNodes intro-
duce more overhead of invalid responses than the malicious

14 EURASIP Journal on Wireless Communications and Networking

N = 50,
Ns = 8,

SEL,
LIGHT

N = 50,
Nc = 8,

SEL,
LIGHT

N = 50,
Ns = 5,

SEL,
LIGHT

N = 50,
Nc = 5,

SEL,
LIGHT

0

50

100

150

200

250

300

N
u

m
be

r
of

re
sp

on
se

s

N
u

m
be

r
of

tr
u

st
ed

pa
th

s
Total
Malicious

Valid
Trusted paths

10 8 10 10

Figure 7: ADOPT total and valid responses in comparison with
trusted paths for the LIGHT and selective caching policies.

N = 50,
Ns = 8,

GRE,
HARD

N = 50,
Nc = 8,

GRE,
HARD

N = 50,
Ns = 5,

GRE,
HARD

N = 50,
Nc = 5,

GRE,
HARD

N = 50,
Ns = 8,

SEL,
HARD

N = 50,
Nc = 8,

SEL,
HARD

N = 50,
Ns = 5,

SEL,
HARD

N = 50,
Nc = 5,

SEl,
HARD

0

50

100

150

200

250

300

N
u

m
be

r
of

re
sp

on
se

s

N
u

m
be

r
of

tr
u

st
ed

pa
th

s

Total
Malicious

Valid
Trusted paths

12

55
34

15 5 3 4
16

Figure 8: Total and valid ARes in comparison with trusted paths for
the HARD and various caching policies.

CachingNodes. For instance, from Figure 8 it is concluded
that there are 50% invalid responses when Ns = 8 and 35%
invalid responses when Nc = 8 (GRE). Additionally, there
are 46% invalid responses when Ns = 8 and 40% invalid
responses when Nc = 8 (SEL). Furthermore, the TrustPath
algorithm introduces an overhead in terms of recommenda-
tions that nodes ask in order to evaluate a path. As we have al-
ready mentioned a ClientNode using the TrustPath algorithm
may ask for recommendations for unclassified nodes. The
number of recommendations that ClientNode 10 requested

Table 3: Recommendations asked for the TrustPath algorithm.

Scenario Number of RECs

N = 50, Ns = 8, GRE, HARD 52

N = 50, Nc = 8, GRE, HARD 25

N = 50, Ns = 5, GRE, HARD 50

N = 50, Nc = 5, GRE, HARD 32

N = 50, Ns = 8, SEL, HARD 38

N = 50, Nc = 8, SEL, HARD 81

N = 50, Ns = 5, SEL, HARD 24

N = 50, Nc = 5, SEL, HARD 56

N = 50, Ns = 8, SEL, LIGHT 44

N = 50, Nc = 8, SEL, LIGHT 46

N = 50, Ns = 5, SEL, LIGHT 81

N = 50, Nc = 5, SEL, LIGHT 86

during various simulation scenarios is depicted in Table 3.
As Table 3 indicates, the overhead due to the requested rec-
ommendations is tolerable, especially when the number of
invalid responses is maximized. For instance, when N = 50,
Nc = 8, and the GRE and HARD policies apply, there is a
huge need for validation of 300 CSI responses, whilst only
52 recommendations are asked before identifying a trusted
path.

5.4. Cerberus function gain

In this section we will discuss the effect of the Cerberus func-
tion. Table 4 illustrates the number of malicious ADOPT
messages that were discarded by the Cerberus function. When
the LIGHT policy applies the number of malicious responses
that are dropped is quite high. This is because caching and
server nodes maintain a larger number of altered entries in
the LIGHT policy than in the HARD policy. Such entries are
mapped to CSI requests, and then are returned by the mali-
cious nodes. The first rightful node in the reverse path im-
mediately discards these responses.

Additionally, Figure 9 shows that when Cerberus is acti-
vated the number of responses that ClientNode receives is sig-
nificantly decreased. Additional measurements, not shown
here, indicated that for the dense scenario (N = 50) there was
25%, and 80% reduction of received ARes, for the HARD and
LIGHT policies, respectively. Concerning the malicious re-
sponses, the corresponding reduction was 20% (HARD) and
75% (LIGHT).

5.5. Roundtrip delay for receiving a response

Figure 10 depicts the round-trip hop delay that a ClientNode
has to wait for until receiving a valid response, under vari-
ous caching policies and cache sizes. The greedy policy min-
imizes this delay, since each ARes is cached, while the cache
is not depleted. The selective policy introduces higher delays,
since the responses are cached after m = 3 appearances. Es-
pecially, when the cache size is relatively small (e.g., 30 en-
tries for 50 available certificates) selective caching produces

Giannis F. Marias et al. 15

Table 4: Cerberus function and packet discarding.

Originated Dropped malicious messages

Requests Responses Scenario Requests Responses

3450 710 N = 30, Ns = 8, GRE, HARD 164 5

3480 929 N = 30, Ns = 8, GRE, LIGHT 143 532

3600 573 N = 30, Nc = 8, GRE, HARD 73 4

3480 534 N = 30, Nc = 8, GRE, LIGHT 69 149

3570 787 N = 30, Ns = 5, GRE, HARD 96 2

3390 856 N = 30, Ns = 5, GRE, LIGHT 95 511

3600 540 N = 30, Nc = 5, GRE, HARD 49 0

3570 666 N = 30, Nc = 5, GRE, LIGHT 70 126

w/o Cerb.
total

w/o Cerb.
malicious

w. Cerb.
total

w. Cerb.
malicious

0

20

40
60

80

100

120

140
160

N
u

m
be

r
of

re
sp

on
se

s

N = 30, Ns = 8, GRE, LIGHT
N = 30, Nc = 8, GRE, LIGHT
N = 30, Ns = 5, GRE, LIGHT
N = 30, Nc = 5, GRE, LIGHT

Responses arrived on a ClientNode when
Cerberus is active or inactive

Figure 9: Responses on a ClientNode with and without Cerberus.

2 5 9 15 19 25 29 12 7 22

CertID

0

2

4

6

8

10

12

14

16

18

H
op

de
la

y

GRE, Cs = 40, Ns = 8
SEL, Cs = 40, Ns = 8

GRE, Cs = 30, Ns = 8
SEL, Cs = 30, Ns = 8

Round-trip hop delay

Figure 10: ClientNode round-trip hop delay until receiving a valid
response.

significant roundtrip delay (e.g., 17 hops for the certificate
with ID 25), and, thus, it should be avoided if peer entities
are equipped with efficient buffers.

6. RELATED WORK

Public key cryptography schemes efficiently support confi-
dentiality services to prevent passive attacks (e.g., eavesdrop-
ping), authentication of nodes, and integrity of messages
to avoid fabrications. The architectures proposed in [2–4]
exploit threshold cryptography schemes to distribute the CA
functionality over different nodes. In [23] GSM/GPRS tech-
nologies are proposed, enabling the nodes of a MANET to ac-
cess CA services. An off-line CA is considered in [24], as well,
to control an ad hoc network. Furthermore, in MANETs, dig-
ital certificates and signatures are employed to protect rout-
ing as well as packet forwarding. Secure routing protocols,
such as ARAN [25], SAODV [26], and forwarding modules,
such as TRM [27], involve CAs. Some of the aforementioned
proposals [4, 23, 25] include, or assume the existence of, a
scheme for retrieving CSI, a service which is essential wher-
ever digital certificates are involved. ADOPT was proposed
in [5] to provide on demand up-to-date CSI to any node in a
MANET. To the best of our knowledge no other scheme like
ADOPT has been proposed so far.

On the other hand, key-based schemes are considered
computationally hard for MANETs, due to complicated
key management techniques, namely generation, distribu-
tion, verification, and revocation of keys or certificates. For
this reason, many trust establishment solutions in MANETs
rely on the trustworthiness of peers. These, self-evolving,
reputation-based, schemes are considered suitable for avoid-
ance of selfishness. They are practical if certificate distri-
bution centres are ephemerally present and computation
resources (e.g., energy, memory) are scarce. They are based
on the determination of the trustworthiness of nodes, re-
garding their offered functionality. A primary goal of rational
nodes is to cooperate in order to avoid, or even mutually iso-
late, notorious nodes (i.e., selfish, malicious) from routine
network operations. Such cooperation requires the exchange
of recommendations and the identification of trusted rec-
ommenders. Several cooperation enforcement schemes have
been proposed in the literature, such as CONFIDANT [14],
CORE [15], SORI [28], and OCEAN [29].

CONFIDANT designed as an extension to DSR rout-
ing protocol, materializes monitoring and reporting of be-
haviours for route establishment that avoids selfish nodes
[14, 18, 19]. It relies on four functional components: (a) the

16 EURASIP Journal on Wireless Communications and Networking

monitor, (b) reputation records for first-hand and trusted
second-hand observations about routing and forwarding
function of other nodes, (c) trust records to control trust
that is given to received warnings, and, (d) a path manager
to take routing decisions. In CONFIDANT, node can de-
tect selfish behaviour of the next node in the route either
directly, by promiscuously sensing its transmission, or in-
directly, by observing routing protocol misbehaviour. The
monitor component registers these deviations. As soon as a
specific misbehaviour occurs, the reputation system is called,
and ALARM messages are sent. Recipients of the ALARM
messages are friends, which are maintained in a friends
list. Incoming ALARMs that originate from “strangers” are
checked for trustworthiness before triggering a reaction.

CORE relies on the DSR routing protocol as well [15].
It uses first- and second-hand experiences, and a Watch-
dog mechanism for the evaluation of other nodes’ behaviour.
Each node monitors the behaviour of its neighbours, with
respect to the requested function, and collects observations
about the execution of that function. If the observed be-
haviour is different than the outcome of a predefined func-
tion, then the rating of the observed node is altered. Obser-
vations are recorded on the reputation table (RT). Each row
corresponds to a neighbour node and consists of three en-
tries, regarding the monitored function: a collection of recent
(first-hand) observations, a list of the recent second-hand
TVs provided by other nodes, and the TV evaluated for the
monitored function. The formula used to evaluate the TV
avoids false detections by using an aging factor that gives
more relevance to past observations. However, such an ap-
proach is vulnerable to an attack where a node builds up a
good reputation before misbehaving.

The secure and objective reputation-based incentive
scheme (SORI) for ad hoc networks focuses on the packet
forwarding function [28]. SORI, consists of three basic
components: neighbour monitoring, reputation propaga-
tion, and punishment. A promiscuous mode is assumed,
where a node is capable of overhearing the transmissions
of its neighbours and maintains a neighbouring node list.
SORI combines features of the fist-hand schemes and those
that use reputation spreading. The nodes exchange repu-
tation information only with their neighbours. This way a
no-cooperative node will be punished by all of its neigh-
bours (who share the reputation information about its mis-
behaviour), instead of just the ones who are directly affected
by this node.

The observation-based cooperation enforcement in ad
hoc Networks (OCEAN) introduces an intermediate layer
that resides between the network and MAC layers [29]. This
layer helps nodes in making intelligent routing and forward-
ing decisions. OCEAN relies only on first-hand observations.
Every node maintains ratings for each neighboring node
and monitors behaviours promiscuously. Positive or negative
events are recorded through the reaction of a neighbor that is
expected to forward a packet. In OCEAN, the absolute value
of a decrement is chosen to be bigger than the value of an
increment. When the rating of a node drops below a thresh-
old, called faulty threshold, the node is added to a faulty list.

This list is attached to the route request message of the DSR
protocol in order to be flooded. A route is rated good or bad,
based on whether the next hop in the route belongs to the
avoid-list. The receiver of an RREQ decides to drop or to fur-
ther process it (through relaying or a route reply), if the in-
tersection of the avoid-list and the DSR route in the RREQ
packet is void. This way, each node along a route makes its
own decision about the trustworthiness of other nodes, and
has control only over routes that it belongs to. Every node
rejects data packets that arrive from nodes belonging to its
faulty list. Thus, misbehaving nodes are eventually isolated.

CONFIDANT and CORE were designed as an extension
to the DSR routing protocol for trusted route establishment,
SORI focuses on the packet forwarding function, and, finally,
OCEAN, introduces an intermediate layer between the net-
work and the MAC layers. Thus, these network, DLC, and
MAC layer specific schemes cannot be directly integrated
with the ADOPT, which is an application layer trust-building
framework. On the other hand, even though ATF illustrates
similarities to the aforementioned schemes, it does not con-
centrate on routing and packet forwarding mechanisms and
demonstrates significant innovations. These include the de-
ployment of the TrustSpan algorithm to reduce the commu-
nication overhead that recommendations produce, and the
TrustPath algorithm to identify and use trusted routes for
propagating recommendations. It introduces the Cerberus
function to isolate selfish nodes. It uses a trust sensor to mon-
itor and evaluate the trustworthiness of the recommendation
function provided by peers, using tests with predefined re-
sults. It incorporates historical, subjective, and trust policy
parameters to evaluate the trustworthiness of nodes’ func-
tions. Finally, it provides a second chance mechanism, where
isolated nodes always have the opportunity to reenter, if they
start to cooperate.

7. CONCLUSIONS

In this paper we discussed the integration of a trust assess-
ment framework, ATF, with ADOPT, a distributed OCSP de-
ployment for MANETs. ADOPT, implemented as a trust-
aware application, can take advantage of ATF to improve
its efficiency. We discussed some security weaknesses that
ADOPT illustrates when malicious or selfish nodes are
present, and described how the integration with the ATF
mitigates such weaknesses. Details of integration of ADOPT
and ATF were presented, according to which ATF acts as
a trust plane, supporting trust-aware applications such as
ADOPT. To enable seamless integration we suggested new
parameters that ATF should take into account when calcu-
lating the trustworthiness of peers, that are brought about
by the behaviour of nodes when executing ADOPT. Sim-
ulation results illustrate that ATF does not introduce sub-
stantial communication overheads. On the other hand, using
ATF, legitimate nodes have sufficient means to isolate selfish
or malicious peer nodes, significantly improving ADOPT’s
reliability and availability. Furthermore, simulation results
show that it is preferable to pay an overhead in communica-
tion cost for detecting and isolating malicious recommenders
and formulating trusted paths via the ATF procedures, than

Giannis F. Marias et al. 17

to propagate and process fabricated CSI responses. ADOPT
can thus rapidly locate legitimate CSI. This information is
transferred through trusted paths, established by the nodes
when using ATF mechanisms. Processing overhead is also
minimized, since ClientNodes do not need to evaluate re-
sponses that ATF identifies as having originated from, or for-
warded through malicious nodes.

Currently we are enhancing the ATF protocol to in-
clude supplementary ADOPT-oriented recommendations.
ADOPT will, thus, be able to take further advantage of ATF
so as to provide fresher responses and distribute more effi-
ciently cached responses. Our goal for ADOPT is to optimize
performance metrics, such as the delay in the location of the
certificate’s status information, the minimization of cache ca-
pacity, as well as the decrease of the communication over-
heads of both ADOPT and ATF. In this direction we are fur-
ther investigating optimized caching policies, which depend
on nodes’ mobility, connectivity, capacity, and trustworthi-
ness.

ACKNOWLEDGMENTS

Part of this work was performed in the context of the project
entitled “PERAS: PERvasive and Ad hoc Security” cofunded
from the European Union by 75% and from the Hellenic
Ministry of Development, General Secretariat for Research
and Technology by 25% under the framework “PENED03.”

REFERENCES

[1] F. Stajano and R. Anderson, “The resurrecting duckling: se-
curity issues for ad-hoc wireless networks,” in Proceedings of
7th International Workshop on Security Protocols, pp. 172–194,
Cambridge, UK, April 1999.

[2] L. Zhou and Z. J. Haas, “Securing ad hoc networks,” IEEE Net-
work, vol. 13, no. 6, pp. 24–30, 1999.

[3] J. Kong, P. Zerfos, H. Luo, S. Lu, and L. Zhang, “Providing
robust and ubiquitous security support for mobile ad-hoc
networks,” in Proceedings of International Conference on Net-
work Protocols (ICNP ’01), pp. 251–260, Riverside, Calif, USA,
November 2001.

[4] S. Yi and R. Kravets, “MOCA: mobile certificate authority for
wireless ad hoc networks,” in Proceedings of 2nd Annual PKI
Research Workshop (PKI ’03), Gaithersburg, Md, USA, April
2003.

[5] K. Papapanagiotou, G. F. Marias, P. Georgiadis, and S. Gritza-
lis, “Performance evaluation of a distributed OCSP protocol
over MANETs,” in Proceedings of 3rd IEEE Consumer Commu-
nications and Networking Conference (CCNC ’06), vol. 1, pp.
1–5, Las Vegas, Nev, USA, January 2006.

[6] G. F. Marias, V. Tsetsos, O. Sekkas, and P. Georgiadis, “Per-
formance evaluation of a self-evolving trust building frame-
work,” in Proceedings of 1st IEEE/CREATE-NET Workshop on
the Value of Security Through Collaboration (SECOVAL ’05),
Athens, Greece, September 2005.

[7] R. Housley, W. Polk, W. Ford, and D. Solo, “RFC 3280 - Inter-
net X.509 Public Key Infrastructure Certificate and Certificate
Revocation List (CRL) Profile,” IETF, April 2002.

[8] D. Johnson and D. Maltz, “Dynamic source routing in ad hoc
wireless networks,” in Mobile Computing, vol. 353, chapter 5,
pp. 153–181, Kluwer Academic, Boston, Mass, USA, 1996.

[9] A. Arnes, Public key certificate revocation schemes, Ph.D. the-
sis, Norwegian University of Science and Technology, Kingson,
Ontario, Canada, February 2000.

[10] M. Myers, R. Ankney, A. Malpani, S. Galperin, and C. Adams,
“RFC 2560 - X.509 Internet Public Key Infrastructure Online
Certificate Status Protocol—OCSP,” IETF, June 1999.

[11] G. F. Marias, K. Papapanagiotou, and P. Georgiadis, “Caching
alternatives for a MANET-oriented OCSP scheme,” in Proceed-
ings of 1st IEEE/CREATE-NET Workshop on Security and QoS
in Communication Networks (SecQoS ’05), Athens, Greece,
September 2005.

[12] A. Abdul-Rahman and S. Hailes, “A distributed trust model,”
in Proceedings of New Security Paradigms Workshop (NSPW
’97), pp. 48–60, ACM, Langdale, Cumbria, UK, September
1997.

[13] M. Cieslak, D. Forster, G. Tiwana, and R. Wilson, “Web
cache coordination protocol v2.0,” IETF Internet draft, 2000,
http://www.ietf.org/intenet-drafts/.

[14] S. Buchegger and J.-Y. Le Boudec, “A robust reputation sys-
tem for P2P and mobile ad-hoc networks,” in Proceedings of
the 2nd Workshop on Economics of Peer-to-Peer Systems, Cam-
bridge, Mass, USA, June 2004.

[15] P. Michiardi and R. Molva, “Core: a collaborative reputation
mechanism to enforce node cooperation in mobile ad hoc
networks,” in Proceedings of IFIP TC6/TC11 6th Joint Working
Conference on Communications and Multimedia Security (CMS
’02), pp. 107–121, Portoroz, Slovenia, September 2002.

[16] Y. Wang and J. Vassileva, “Bayesian network trust model in
peer-to-peer networks,” in Proceedings of 2nd International
Workshop on Agents and Peer-to-Peer Computing (AP2PC ’03),
pp. 23–34, Melbourne, Australia, July 2003.

[17] C. Castelfranchi and R. Falcone, “Trust is much more than
subjective probability: mental components and sources of
trust,” in Proceedings of the 33rd Hawaii International Confer-
ence on System Sciences (HICSS-33 ’00), p. 132, Maui, Hawaii,
USA, January 2000.

[18] S. Buchegger and J.-Y. Le Boudec, “The effect of rumor spread-
ing in reputation systems for mobile ad-hoc networks,” in
Proceedings of 1st Workshop on Modeling and Optimization in
Mobile, Ad Hoc and Wireless Networks (WiOpt ’03), Sophia-
Antipolis, France, March 2003.

[19] S. Buchegger and J.-Y. Le Boudec, “Performance analysis of the
CONFIDANT protocol,” in Proceedings of the 3rd ACM Inter-
national Symposium on Mobile Ad Hoc Networking & Comput-
ing (MobiHoc ’02), pp. 226–236, Lausanne, Switzerland, June
2002.

[20] S. Marti, T. J. Giuli, K. Lai, and M. Baker, “Mitigating routing
misbehaviour in mobile ad hoc networks,” in Proceedings of the
6th Annual International Conference on Mobile Computing and
Networking (MobiCom ’00), pp. 255–265, Boston, Mass, USA,
August 2000.

[21] D. Clark, C. Partridge, J. C. Ramming, and J. Wroclawski,
“A knowledge plane for the internet,” in Proceedings of the
ACM Conference on Applications, Technologies, Architectures,
and Protocols for Computer Communications (SIGCOMM ’03),
pp. 3–10, Karlsruhe, Germany, August 2003.

[22] J-SIM simulator package, http://www.j-sim.org/.

[23] J. Cheambe, J.-J. Tchouto, C. Tittel, T. Luckenbach, and M.
Bechler, “Security in wireless ad-hoc networks,” in Proceedings
of 13th IST Mobile & Wireless Communications Summit, Lyon,
France, June 2004.

http://www.ietf.org/intenet-drafts/
http://www.j-sim.org/

18 EURASIP Journal on Wireless Communications and Networking

[24] S. Čapkun and J.-P. Hubaux, “BISS: building secure routing
out of an incomplete set of security associations,” in Proceed-
ings of the ACM Workshop on Wireless Security (WiSe ’03), pp.
21–29, San Diego, Calif, USA, September 2003.

[25] K. Sanzgiri, B. Dahill, B. Levine, C. Shields, and E. Royer,
“A secure routing protocol for ad hoc networks,” in Proceed-
ings of 10th IEEE International Conference on Network Protocols
(ICNP ’02), pp. 78–89, Paris, France, November 2002.

[26] M. G. Zapata and N. Asokan, “Securing ad hoc routing proto-
cols,” in Proceedings of the ACM Workshop on Wireless Security
(WiSe ’02), pp. 1–10, Atlanta, Ga, USA, September 2002.

[27] V. Leung, J.-H. Song, Y. Kawamoto, and V. Wong, “Secure
routing with tamper resistant module for mobile ad hoc
networks,” in Proceedings of the 4th ACM Interational Sympo-
sium on Mobile Ad Hoc Networking and Computing (MobiHoc
’03), Annapolis, Md, USA, June 2003.

[28] Q. He, D. Wu, and P. Khosla, “SORI: a secure and objective
reputation-based incentive scheme for ad-hoc networks,” in
Proceedings of IEEE Wireless Communications and Networking
Conference (WCNC ’04), vol. 2, pp. 825–830, Atlanta, Ga, USA,
March 2004.

[29] S. Bansal and M. Baker, “Observation-based cooperation en-
forcement in ad-hoc networks,” Tech. Rep., Stanford Univer-
sity, Stanford, Calif, USA, 2003.

Giannis F. Marias received his Diploma in
computer and software engineering in 1995
from the Department of Computer and
Software Engineering, University of Patras,
Greece, and his Ph.D. degree in informat-
ics and telecommunications from the Uni-
versity of Athens, Greece. He is a Senior Re-
search Assistant in the Department of Infor-
matics and Telecommunications, University
of Athens, and a nominated lecturer in the
Athens University of Economics and Business (AUEB), Depart-
ment of Informatics. He has participated in several projects real-
ized in the context of EC frameworks (RACE, ACTS, and IST) and
several national R&D initiatives. His research interests are in the
fields of security, trust, and privacy in wireless, mobile and per-
sonal communications, multiple access protocols, spectrum agility,
and mobile and pervasive computing. He has authored more than
45 scientific articles in the above areas in international journals and
conferences. He has organized international workshops and partic-
ipated in technical committees in several conferences and sympo-
siums.

Konstantinos Papapanagiotou received his
B.S. degree in informatics and telecommu-
nications from the Department of Infor-
matics & Telecommunications at the Uni-
versity of Athens, Greece, in 2003, and his
M.S. degree (with distinction) in informa-
tion security from Royal Holloway, Univer-
sity of London, in 2004. Currently, he is
pursuing a Ph.D. degree in the Department
of Informatics & Telecommunications, Uni-
versity of Athens. His research interests are in the areas of trust and
security in mobile and wireless communications, ad hoc networks,
and steganography.

Vassileios Tsetsos received his B.S. degree in
informatics from the Department of Infor-
matics & Telecommunications at the Uni-
versity of Athens, Greece, in 2003, and his
M.S. degree (with honours) in the Division
of Communication Systems and Data Net-
works from the same department in 2005.
He is currently a Ph.D. student in the same
department and member of the Pervasive
Computing Research Group. He has been
involved as software designer and developer in several national and
European R&D projects (PoLoS, PASO, PENED). His research in-
terests are in the areas of mobile and pervasive computing, trust
and reputation systems, semantic web, ontological engineering,
and web applications.

Odysseas Sekkas received his B.S. degree in
informatics from the Department of Infor-
matics & Telecommunications at the Uni-
versity of Athens, Greece, in 2003 and his
M.S. degree in communication systems and
data networks from the same department
in 2006. Nowadays he is a Ph.D. candidate
in the department in the research area of
data management in pervasive computing.
He has participated in several European and
national research projects. His research interests are in the areas
of pervasive/mobile computing, ad hoc networks, sensor networks,
and data fusion.

Panagiotis Georgiadis is an Associate Pro-
fessor in the Department of Informatics and
Telecommunications at the University of
Athens, and holds a B.S. degree in physics,
an M.S. and a Ph.D. degree in computer sci-
ence. He has been a regular member of the
Senate of University of Athens, Director of
the Computer Systems & Applications Divi-
sion of the Department of Informatics, and
Secretary General for Information Systems
by the Greek Ministry of Finance. His research interests include
distributed systems, simulation and management of information
systems. He has authored more than 70 scientific articles in inter-
national journals and conferences, and contributed in national and
European research projects.

