
Context Awareness in Mobile Computing Environments: A Survey

Christos Anagnostopoulos, Athanasios Tsounis, Stathes Hadjiefthymiades
Department of Informatics and Telecommunications, University of Athens

Panepistimioupolis, Ilisia, Athens 15784, Greece
Tel.: +302107299526

bleu@di.uoa.gr, thantsoun@di.uoa.gr, shadj@di.uoa.gr

Abstract
In this survey we report software

architectures for context awareness, sensor
centric systems and context modeling issues.
Defining architecture for supporting context-
aware applications explicitly implies a scalable
description of how to represent contextual
information and which are the abstraction
models capable of handling it. Using sensors to
retrieve contextual information leads to a sensor
network scheme that provides services to upper
levels of applications. Operations for capturing,
collating, storing and disseminating contextual
information at the lowest level and aggregating it
into increasingly more abstract models qualifies
the context-aware systems.

Keywords: Context model, Context awareness,
Contextual information, Sensors.

I. INTRODUCTION
In the recent years we have witnessed rapid

advances in the enabling technologies for
ubiquitous computing, such as the increasingly
emerging pervasive computing standards,
embedded sensor technologies, and wide range
of wired and wireless protocols. In order to
engineer context aware computing systems, it
is of high importance to understand and define
what are the constituent components of context
from an engineering perspective.

We envisage a 3-dimension space into
which an architectural structure for a context-
aware system should be defined. The space
encompasses three logical axes: Context
Model, Sensor-centric Support and System
Behavior. The 3-dimension space is illustrated
in figure 1.

The Context Model is structured around a
set of abstract entities, each describing a
physical or conceptual object. The definition of
a Context Model ranges from raw data
oriented models (e.g. spatial information,
network measurement, QoS information,
environmental information) to abstract based
models (decision making, inference engines,
task performance, pattern behavior, context
reasoning) related to activities of specific
contextual abstract entities (e.g. person
activity, communication channel).

Obviously, high-level context can not be

directly acquired from sensors; it is reasoned
from sensor-driven context monitored by
sensor-based systems. Sensor based systems
exploit the capabilities of sensors in order to
capture low level contextual information. Such
systems may couple the collected data with a
compatible raw data oriented context model
(context model-dependent sensor system), or
focus on certain sensor management being
insensitive to a context model.

Apparently, a context-aware system model
should be aware of the notion of context.
System Behavior in context-aware computing
takes into account the adaptability of a system
towards dynamic changes of the contextual
information. Systems targeted for the provision
of context-aware applications differently
handle context adaptation. Such System may
continuously react to the highly dynamic
nature of context and behave properly at any
context alteration, or remain idle and
insensitive to context changes.

Context Model

Abstract entity-oriented

Raw data-oriented

System Behaviour
Sensor-centric Support

Context model dependent

Context model insensitive

Adaptive to context

Inactive to context

Fig.1. 3D space of Context

A. Definitions

A number of notions and definitions related
to context aware computing are present in this
survey. We exemplify an array of the
appropriate concepts:

Context: A well known definition was
given by Dey and Abowd in [41]; according to
this “Context is any information that can be
used to characterize the situation of an entity.
An entity is a person, place or object that is
considered relevant to the integration between
a user and an application, including the user
and the application themselves”. We
circumscribe the notion of the context as a set

of situations, which describe humans,
applications, and environment related to
specific activities.

Contextual entity: Any conceptual or
physical object which is derived by the
definition of the context including certain
contextual information.

Observable: The contextual information
retrieved by a deserving contextual entity, so
that an application could exploit in execution
time.

The contextual information is retrieved by
an Observable, which composes the current
view of a Contextual entity, embedded in the
Context. The above notions could be envisaged
in figure 2.

Context
Contextual entity
Observable

Contextual information
Fig.2. Contextual notions

In the remainder of the survey we first

present concepts about context modeling. Such
concepts are discussed from two viewpoints:
the context representation and context
detection. Section 3 refers to available sensor-
centric systems for context sensing, producing
contextual layered information. These systems
are capable of handling the context model in
order to meet the needs of context-aware
applications. Section 4 reports on
infrastructures and architectures that enable
and support context services with respect to
context monitoring, distributing and reasoning.
Section 5 describes a reference model for
context-aware system architecture. The
concluding section provides an outlook on
future developments and open issues.

II. CONTEXT MODELING
The context description initiates a

realizable semantic form (e.g. description
based on Ontology languages) with which an
application should transform it to its own
computational logic. The cognitive notion of
context emerges from the captured events in
which entities get evolved. An operational
definition of the notion of context for the
design and development of context-sensitive
systems is drawing upon the distinction
between the notion of an instant snapshot of
observable entities (a situation) and the
synthesis of these entities over time (a
context). Observable entities and their
interrelationships can be mapped, at the

implementation phase, to colonies of
contextors.

A contextor [2] is a software abstraction
that models relationships between observables.
Contextors share a common I/O structure
including control channels and meta-data to
ensure and express Quality of Service (QoS).
According to their model they can be
combined as directed graphs or encapsulated
into higher computational units. Coutaz and
Rey [2] expand the notion of context on the
basis of the notion of situation. A situation at
time t is a set of observables named state
vector.

Context at time t is a composition of
multiple situations over a period of time [t-∆t,
t]. A situation refers to users involved in a
particular task. Given a set of users U, a task T
and two instances of observation at t0 and t, the
Context at time t is the following composition:

ContextU,T(t) =
COMPOSITION(situation U,T(t0),…,situation U,T(t)),

where situationU,T(t) is the Situation at t that
refers to U for performing T.

The concept of composition is a kind of
history function that involves the values of
new relations and system state variables as
well as the destruction of old ones. Hence, a
contextor should be viewed as a computational
extension of context related to an Observed
System Context.

A contextor returns the values of a variable
that belongs to that context. In figure 3 a
graphical representation of a contextor is
depicted.

Functional
Core

Control-in

Control-out

Data-out

Meta-data outMeta-data in

Data-in

Fig.3. A Contextor

Architecture for context awareness should

take into consideration the roles assigned to an
entity and relations of this entity with others.
Crowley and Reignier [5] envisage the context
model as an intermixture of modules, which
are defined as transformations of observations.
Modules are assembled into reflexive
processes, enriched with meta-information,
under the direction of a supervisory controller.
Federations of processes are dynamically

assembled, according to a model, which is
based on ontology for context aware systems.
A fundamental aspect of interpreting sensor
observations, similarly to Contextors aspects
[2], is to form entities by gathering
observation. From the perspective of the
system, these entities are associations of
correlated observable variables.
Context is modeled as a composition of
situations relative to a task. Within a situation,
context shares the same set of roles and
relations. Thus, context determines the
collection of observable roles and relations.
The model has the following form:

Context (U,T):
{Role1,Role2,…,Rolen;Relation1,Relation2,…,Relationm }

A role may assume a certain action within a
task. In [5], a crucial problem is how to
provide a mechanism for dynamically
composing federations of meta-controllers that
observe the entities and relations relative to the
user context. This approach is based on a rule
based system written in JESS [42] (CLIPS in
Java). Meta-supervisors are designed for
specific contexts and maintain a model for the
current context of user. This model includes
information about semantically related
contexts that may be attained from the current
context, as well as the user and system context
events may signal such a change. Figure 4
illustrates the transformation of data and events
undertaken by an observational process under
the direction of a reflexive controller. The
action in which an observational process
transforms data and events under the direction
of a reflexive controller.

Transformation

Control-in

Events and Data

State and capabilities

Events and Data
control

Fig.4. Transformation of Data and Event
observed by a controller

Modeling contextual information in

pervasive computing supports the basis of
building a context management infrastructure.
The motivation of context management has
derived from the fact that applications will
need to be sensitive to context as the latter is
dynamically changing. In [11], characteristics
of contextual information are specified.
Contextual information exhibits certain
temporal characteristics. Context can be static,
which means that it describes invariant aspects

(e.g. a person’s date of birth), and dynamic,
which refers varying contextual information
(e.g. a person’s location). Static context can be
obtained directly from users. Frequently
changing context could be obtained by indirect
means, e.g. through sensors. Hence, context
could be imperfect, i.e. the relevant
information is inconsistent, out of date and
incomplete.

Therefore, a context model must support
multiple representations of the same context in
different forms and at different levels of
abstraction. Capturing the relationships that
exist between the alternative representations
should be mandatory. Context information is
highly interrelated. In [11], several
relationships are evident between three
entities: people, their devices and their
communication channels. The context model is
based on an object-based approach in which
context information is structured around a set
of entities, such as physical (devices) or
conceptual (persons, communication
channels). Properties of objects are represented
by attributes and the entities are linked to
attributes and other entities by uni-directional
relationships known as associations.

 The above model classifies association,
according to its nature, to two main parts:
static association and dynamic association. The
context captured by a static association is
typically known with a high degree of
confidence. The context captured by a dynamic
association, through hardware or software
sensors (e.g. widget [43]), is not inserted
directly to the model but it is transformed in
some way to bring it closer to the level of
abstraction required by applications, as
mentioned in [5]. In addition the model
classifies the association according to its
structure to two types: simple association and
composite association. A simple association
could be thought of a link between an object
and its property. A composite association
could be referred as a communication link
from a Person to a set of his/her activities.

Managing such a model it is reasonable to
envisage a meta-model of associations known
as dependencies. A dependency is a special
type of relationship that exists not between
entities and attributes but between associations
themselves. A dependency can be qualified by
a participation constraint, which limits the
pairs of associations to which a dependency
applies. We could extend the management of
this meta-model transforming it to a Bayesian
meta-network (a two-level network in this
case) [4] intended for context prediction
concepts. Finally, the imperfection of the
context may direct quality issues that the

model could apply. The information systems
community has more extensively researched
Context Quality Modeling (CQM). This model
borrows ideas from Wang [36] who describes a
CQM, in which attributes are tagged with
various quality indicators, focused on
coverage, resolution, accuracy, repeatability,
frequency and staleness of context. The graph
in figure 5 depicts the concept of this model
including the associations and their
dependencies.

Person Device

Communication
Channels

Location
coordinates

activity

ID

typename

isLocatedNear

locatedAt locatedAt

hasChannel
requires

hasType

identifiedBy

named

engagedIn

dependsOn

Fig.5. Context model enriched with

associations and dependencies

In figure 5 the dependency dependsOn
relates two associations (engagedIn and
locatedAt). We can infer that an activity A,
into which a person P is engaged, is actually
depended upon the location of the P, thus
decreasing the number of the possible activities
that P could undertake in the considered
location.

A different view of context, the activity-
centric view [34], focuses on the context that
surrounds the performance of an activity by an
agent. Modeling a context based on this
concept focuses on more abstract levels. Since
the context being considered covers the
realization of the activity by an agent, it is only
meaningful when the activity is being
performed. Figure 6 illustrates the view of an
activity-centric context as stated from Prekop
and Burnett [34].

agent performance activity

Involved in of

context

surrounds

generic
context

generic
activity

surrounds

Inherited from

evolves

Fig.6. A view of an activity-centric context

Activities vary in scope, from the very
broad to the very specific, with broad activities
often containing more refined or specific
activities. The performance of a broad activity,
by the agent, creates a context, assuming that
the nested activities have already been
performed creating a nested or cascading
context. The context surrounding the activity is
specialized from a higher-level, more generic
context, Context, which surrounds a higher-
level more generic activity, Activity. The
generic Contexts and Activities can be
modeled, a priori, for various domains. A
smart room that implements the activity-
centric view of context could monitor
realization of an activity by the agent and,
together with machine learning techniques,
evolve Context to better represent the context
that surrounds the particular class of activities.
The conceptual model of context, based around
the realization of an activity by an agent,
differs from many of the previous approaches,
because it focuses on creating context-aware
applications that support cognitive activities
rather than context-aware applications that
focus on time, location or other elements. The
Context Manager, which monitors the agent’s
activities and makes suggestions to the agent,
controls the interactions between the user
(agent) and the environment (activities). An
example representation of context including an
agent performing a set of tasks is shown in
figure 7.

Parent Context:
 Organising a Workshop
Agents Involved:
 Self
Resources:
 Calendar,email,names,Travel,Rooms
Process:
 Begin{
 Initial Agenda
 If not Approval Agenda Begin
 Contact Participant
 Book Rooms

 Book Travel
}End

Fig.7. Context representation based on the
tasks performed by the agent

III. SENSOR BASED ARCHITECTURES

The contextual information is captured by a
sensor-based system, following an appropriate
context modeling. Information retrieval is
accomplished through sensor networks. Sensor
networks may take into account the nature of
information using integrated methods being
incorporated in the network. The sensors could
be used as a simple retrieval engine
implementing raw data sensing techniques,
such as location observation of the sensor
bearer, but also could be used as a more
sophisticated mechanism for determining user
situation e.g. attendance of a meeting. Sensor
interaction with mobile devices introduces
many challenges to mobile computing. Except
from discovering services, searching for
resources and modeling context in a sensor-
aware system a crucial challenge is to detect
the user’s context (e.g., not a-priori known).

Sensor based context detection for mobile
users explicitly empowers human computer
interaction. The work described in [18] focuses
on a communication scheme for retrieving
context through autonomous sensors with no
central point of control. These sensors, named
Smart-Its [19], know about their own sensing
capabilities and can report them to their
neighbors, if inquired. The concept of
introducing an interchanging format about
sensor-features among Smart-Its is based on
the Smart Context-Aware Packets (sCAPs), a
document-based approach for collecting
sensor-features sharing some similarities with
context-aware packets (CAP) [29]. The sCAP
gets filled with sensed information on its way
through the environment. Each Smart-It
receiving a sCAP contributes to the required
sensor features and forwards it to another
Smart-It in its neighborhood. Combining the
gained features stored in the sCAP allows each
Smart-It to make assumption about the current
context. Based on this knowledge it can
forward this sCAP to an appropriate sensor for
further context investigation.
A sCAP document is organized into three
parts: retrieving plan, probable context and
retrieving path. The retrieving plan integrates
the execution plan determining which sensors
should be involved into the context detection.
It describes which types of sensors have to be
queried for retrieving the current context. The
probable context is simple represented by a list
of features already retrieved. In this point, an
ontology language should be able to provide a

more expressive scheme for modeling the
probable context, rendering it available to an
inference engine. The retrieving path
comprises a time ordered list of visited sensors
aiming to prevent loops (i.e. revisit sensors
twice) and support knowledge about the
network topology. The retrieving plan
conforms to an execution plan and rewriting
rules. The interaction schemes for the
application of sCAPs are Pull and Push.
Whereas context pull is used when the user
explicitly needs the current contextual
information, the push scheme is more
appropriate for emerging events and interrupts,
such as detecting rapid changes in the
environment. Figure 8 depicts the interaction
of a mobile device using the context detection
concept of sCAP.

SmartIts SmartIts

SmartIts

user user
user moves

Something
happened

sCAP sCAP

sCAP`

sCAP`

Current
contextual
information

What is my
Present
context?

Fig. 8: Detection of contextual information

using sCAPs

The user might receive several sCAPs
reporting the same context. This should focus
on future merging strategies of sCAPs
applying an online reconfiguration of sensors
or paralleling the context detection process.

After sensing raw data from low level
sensors, intelligent environment architecture
for multi - granularity context description is
required in order to model more complex
contextual information.

The sensor devices range in complexity, as
asserted in [3], from devices as simple as a
binary on-off reporting module, to sensors that
can decide which users are engaged in a certain
event in the room. Their communication
capabilities may range from simple on-off
binary signals to supporting Web Services.
Sensors are assumed to directly connect to the
environment producing raw data at irregular
intervals. Merino [3] architecture classifies the
sensor’s capabilities and focuses on an
intelligent environment comprising layers of
sensors. Organizing the whole system into
layers of complexity is also necessary, given
the scale of the number and variety of sensors
involved. Sensors in higher layers are capable

of processing raw data in order to support a
more abstract context model defined by
various context-aware applications.

Merino is a proposed architecture for
context layers for the sensed Intelligent
Environment (IE). Figure 9 models the Merino
architecture.

Smart Environment Agents

Smart Sensors

Sensors

User Model

IE Repository

Fig.9. Merino Architecture

The architecture consists of five elements:
sensors, smart sensors, smart environment
agents, repository, and user model. In the
lowest level, sensors are mechanisms in both
hardware and software to interrogate both the
physical and computational environment.
Smart sensors, forming the first layer of the
context abstraction, are responsible for
aggregating and filtering the raw sensor data
into structures that are available in the
repository interface. The repository interface is
a space where smart environment agents can
exploit the processed data by smart sensors
providing a rich context environment. Smart
environment agents constitute the second layer
of context abstraction. These agents may be
instantiated by two classes: The class of rich
context agent class, and the class of
performance enhancers. Rich agents access the
contextual information from the repository to
form higher-level context information, the so
called “rich-context”. For example, a rich
agent may access location and calendar context
information to produce contextual information
such as a meeting is on the agenda for now.
New contextual information updates the
repository, which may be thought as a
knowledge base. Performance enhancers
include learning and reasoning algorithms to
discover patterns, which involve agents to
monitor the performance and scalability of the
underlying smart sensor layer. The smart
agents produce rich context information that is
provided on varying levels of granularity. The
user model is managed by a Smart Personal
Assistant accessing the repository for
customizing and configuring the user needs
updating regularly the rich context. User
models can be stored in objects in the same
distributed context database also being
accessed by the second level of the
architecture.

Sensors of every type are capable of
providing services. Context aware services

should be published or discovered in a
ubiquitous manner. An important feature of
context-aware systems is that the users should
be able to find out what the system is doing on
their behalf supporting those services.

The context-aware service provision is a
challenge for adaptive interaction of pervasive
services. CAPEUS (Context-Aware Packets
Enabling Ubiquitous Services)[29] is a system
architecture that independently discovers,
selects and executes services with regard to the
current context of the user. The adaptation of
service interaction depends on the following:
context constraints being embedded in service
calls and actual context information. Context
constraints are utilized to enable service
selection and execution processes and also act,
as mediators for expressing service needs to
the environment. The service needs result from
the user’s current context or task. The system
adopts a uniform document format, called
Context-Aware Packets, to express service
needs and constraints on a high abstraction
level.

The CAP is created by the user and placed
in the network in which it gets evaluated.
Service needs are expressed by context
constraints, which describe the situation and
circumstances under which the user intends to
use a service. The CAP document is organized
into three parts: Context Constraints, Scripting
and Data. Context Constraints are used to
mediate user’s service needs. A constraint is a
set of three entities: the Abstract entity, the
Relation and the Event. The first relates to the
service peer, sensor or person. Relation entity
describes dependencies of entities constraining
the selection of a desired service. Events,
represented by logical conditions, report
situations detected by sensors forming a
trigger. The scripting part represents simple
scripts to be executed during service
invocation in order to provide more complex
semantics. The data section provides data to be
processed by the selected service. A user
injects a CAP to a local SAN (Service Access
Node). The SAN evaluates the CAP in two
phases: selection and execution. The SAN
checks whether the CAP is related to a service
in its domain. If not, it routes the CAP to the
appropriate SAN to meet the service needs. In
the second phase, the service is executed
according to the contextual constraints, being
embedded in the CAP, and the current context
of the user. The targeted SAN reads out sensor
signals to find out the user’s current context in
service execution time. An example of service
invocation relative to context-constraints is
depicted in figure 10.

user printer converter

SANSAN

1

2

3
4

Fig.10. An example using the CAP

A user wants to print a PDF file but the

nearest printer can not support this type of file.
A CAP is transparently injected in the network
(1) and the SAN routes this CAP to the
appropriate SAN (2) which can convert the
PDF file to the type of file that the printer
supports. Finally the converted data in the
CAP is printed (4).

IV. CONTEXT-AWARE ARCHITECTURES
The common philosophy of context-aware

system architectures [24-28, 30-33, 17] is the
hierarchical structure. This abstract structure
covers two levels: the operational and the
informational. From the operational point of
view the system modules that are distributed in
a mobile computing environment may serve
as:
• Sensors which capture raw data
• Autonomous mediators that process and

filter raw data streams exporting them into
higher data-representative layers

• Smart agents which can communicate with
each other in order to mine knowledge that
resides in the system

• Context aware applications that provide
innovative services to end users catering
for context adaptation and maintenance of
an integrity scheme for the user context.

With respect to the informational level,
knowledge representation may focus on:
• A simple data model without an expressive

scheme
• Modeling large amount of data using

classic relational and object-oriented
paradigms

• Serving as an ontology that describes
distributed system resources such as user
profiles, device capabilities and, even,
context of applications.

• The operational level coupled with its
informational counterpart comprises a
universal context aware system model.

Figure 11 depicts the discussed combination of
the above models.

sensor sensor sensor sensor

mediator mediator

agent agent agent agent agent

application application application

data types

knowledge
 base

ontolgies context-services

raw data

informational operational

Fig.11. Operational and informational system

model

In the following paragraphs we refer to several
system architectures that fulfill the
requirements of context modeling and
implement some of the features of mobile
computing environments (e.g. context
management, context representation, context
security).

A. Operational Level viewpoint

Building context-aware systems involves
facing several design challenges to cope with
highly dynamic environments and constantly
changing user requirements. Such challenges
are mainly related to gathering, storage,
modeling, distribution and monitoring of
context. A proper architectural support is
needed to address these challenges. Web
Architectures for Services Platforms (WASP)
[15] is a project dealing with the definition of a
service platform which supports the
development and the deployment of context-
aware integrated mobile speech and data
applications, based on Web Services
technology on top of 3G mobile networks.

The WASP platform provides services to
Context Providers, which communicate
through the Context Interpreter module.
Context Interpreter tends to gather contextual
information, conforming to a specific context-
model, making it available to the rest of the
platform. Moreover, the platform consists of a
set of Repositories, which support the Monitor
component with knowledge of the elements
involved in WASP. The Repositories collect
information from the Context Interpreter (e.g.
user profile, entity types) and use services of
the Service Providers. The Monitor component
is responsible for integrating with the WASP
applications, managing their subscription
(using WASP Subscription Language - WSL)
and gathering information from Repositories
and Context Interpreters. Applications use
WSL during their subscription, configuring the
platform to react to a given correlation of
events, potentially involving contextual

information.
The specific context-model is relevant to

data entities. Data entity represents objects of
the real world (e.g. person, activity, device,
location). Attributes and associations are
combined with data entities. Furthermore,
ontologies are believed to be a key requirement
for modeling software system architecture in
order to achieve a more expressive scheme of
contextual information. Ontologies allow
architectural components to share knowledge
and reason about information consistency.
Different data entities must share common
contextual representation, allowing the
derivation of complex context. WASP exploits
the Semantic Web Technology, building
contextual information using ontologies from
an ontology-based markup language,
DAML+OIL, OWL, [37]. By exploiting
semantic knowledge, the platform could be
invoked by different conceptual layers, from
context storage to adaptive interfaces and from
service description- discovery to complex
service composition. In figure 12 the WASP
platform is illustrated.

WASP PLATFORM

CONTEXT PROVIDERS

CONTEXT INTERPRETERS

MONITOR
SUBSCRIPTION

REPOSITORIES
PROFILES
ENTITIES

SERVICE
PROVIDERS

WASP
APPLICATIONS

Fig.12. WASP architecture

Among the critical research issues in

developing context-aware systems are context
modeling, context reasoning, and knowledge
sharing and user privacy protection. The work
described in [16] addresses these issues by
developing an agent-oriented architecture, the
Context Broker Architecture (CoBrA). CoBrA
aims to assist devices, services and agents to
become context aware in smart spaces (e.g. an
intelligent meeting room). Such an
infrastructure requires the following: a
collection of ontologies for modeling context,
a shared model of the current context, and a
declarative policy language, that users and
devices may use to define constraints on the
sharing of private information and protection
of resources. CoBrA uses the OWL [37] to
define contextual ontologies, providing a more
complex and machine comprehensible
representation of contextual information for

reasoning and knowledge sharing. CoBrA
provides a resource-rich agent, named context
broker, to manage and maintain the shared
model of context. The architecture defines that
a context broker is associated with a certain
smart spaces environment. Such context broker
is an aggregation of other brokers representing
smaller parts of the original smart space
environment. This hierarchical approach, with
the support of shared ontologies, helps to avoid
the bottlenecks associated with a single
centralized broker. Context broker can also
infer contextual knowledge that cannot be
easily acquired from the physical sensors and
can detect and resolve inconsistent knowledge
that often occurs as a result of imperfect
sensing. Additionally, CoBrA provides a
policy language that allows users to control
their contextual information. A context broker
acquires contextual information from
heterogeneous sources and fuses such
information into a coherent model that is then
shared among computing entities in the
environment.

Another infrastructure that enables scalable
and flexible sensor-based services is that of
IrisNet [13].IrisNet employs the
aforementioned scheme (hierarchical system
model) by forming a two-tier hierarchy of
sensing nodes and information brokering
(queries) nodes. It substantially reduces
network bandwidth requirements through the
use of senselets. Senslets are binary code
fragments that perform intensive data filtering
at the sensing nodes. IrisNet includes advanced
sensor devices (called brilliant rocks) which
form a wide area sensor network for intelligent
context processes. Such processes conform to
distributed filtering, hierarchical caching,
query routing and context freshness
specifications. The two tiers of IrisNet, the
Sensing Agents (SA) and the Organizing
Agents (OA) can fulfill these specifications.
The former collect and filter sensor readings
according to a data model and the later perform
query-processing tasks on the sensor readings.
IrisNet OAs provide a simple way for a service
to incorporate support for complex queries.
The system enables senselets to be uploaded
from OAs to any SA to instruct and perform
tasks (e.g. collecting the required information,
filtering, caching) and transmit the distilled
information to the OA. The OA and SA
execution environment uses a service-specific
processing and filtering of the sensor feeds
which eliminates duplicated and redundant
information in order to maintain a useful
context-sensitive environment. Figure 13
represents an IrisNet instance.

Organizing
Agent

Sensing
Agent

Sensing
Agent

Sensing
Agent

Organizing
Agent

Organizing
Agent

Organizing
Agent

Organizing
Agent

Organizing
Agent

Sensing Devices Sensing Devices

OA Group per Service

OA Group per Service

service
service

Fig.13. IrisNet instance

The agent-based environment for context-

aware mobile services, My Campus [22],
revolves around a growing collection of
customizable agents capable of automatically
discovering and accessing Internet and Intranet
services as they assist their users in carrying
out different tasks. The power and scalability
of this environment directly are attributed to a
set of ontologies for describing contextual
attributes (e.g. user preferences) facilitating the
easy inclusion of new, task-specific, agents.
Agents focus on context-sensitive message
filtering, message routing and context-sensitive
reminding. More sophisticated agents
incorporate planning and automated Web
Service access functionality.

As already mentioned, a large number of
system architectures are based on an agent-
oriented scheme achieving a hierarchical
structure in context monitoring. Agents form a
platform that enables interaction among
contextual information, users and resources
through an event generator. Therefore in the
majority of architectures, the whole system
consists of a multitude of active spaces that
provide ubiquitous access to system resources,
according to the current context of the user.
Below, we present an active spaces system.
UbiqtOS [40] supports dynamic, application-
specific and context-aware adaptation by
forming a simple, event-based architecture to
allow interoperability of low-end devices.
UbiqtOS supports heterogeneity and mobility
in mobile computing environments. The
system consists of the following components:
• An extensible agent engine (SEMAS),

which allows context-specific software to
be relocated in a device and execute its
task.

• An extensible registry (UbiqDir) which
allows components to be dynamically
discovered in the system using “smart”
lookups. It captures and exports changes of
context to components residing within
devices, thus achieving context aware
adaptation.

• A synchronous-event routing system
(Romvets) providing a dynamic extension
of components installed in UbiqtOS, and,

• finally, a dispatcher module which exports
context-specific views of distributed
resources in an active space.
One of the most important elements

included in the mobile computing context is
location. Location may be represented as a
combined graph of entities related with spatial
information.

Many architectures of ubiquitous
computing process the location information
through suitable spatial models. The RAUM
[8] architecture develops context modeling
focusing on the location. The system only
supports context generated by an appropriate
spatial model. Such model is based on the
relative location of entities rather than on their
identity. RAUM is a spatial-aware
communication model in which, two entities
are considered contextually interrelated of their
nearby locations rather than of their network
identifiers. This model consists of two main
parts: the Location Representation Model
(LRM) and the Communication Model (CM).
The LRM defines how location is represented,
stored, and communicated in the RAUM-
model and the CM defines how location
information is used in the communication
among the RAUM entities. Figure 14 depicts
the LRM tree.

r o o t

s p a t ia l
d e p e n d e n c ie s

3 -D p o s i t io n s

Fig.14. LRM tree representation

In the RAUM - LRM a tree presentation for

location selection is adopted. This location-tree
consists of three general layers: Α tree-root, the
semantic sub-layers and a position stated in
three-dimensional Cartesian coordinates.
Further specialization of the third layer, into
sub-sections, enables a finer grained
differentiation of locations. The RAUM
system makes use of distributed storage of the
location information as far as all the involved
objects are capable of handling such
information. Thus, no central entity for storing
and providing the complete location-tree is
required. All the objects (e.g. mobile devices)
in the system only hold the part of the tree that
is pertinent to them. Most objects only have to
store the path through the tree representing

their own location. This implies that RAUM is
used whenever peer-to-peer communication is
required. The systems which were developed
using the RAUM model are MediaCup [9],
MemoClip [10] and the SmartIts [19]. All
these systems contain micro-controller based
computing devices.

Context presentation plays a significant
role to the user, assuming that the presentation
is a combined logic of user, context and
terminal features. The rule-based architecture,
described in [23], approaches the context
adaptation forming three predicates: The fact,
the system assumptions and the discourse
context. Significant facts can be collected
directly from the user (e.g. through a very short
questionnaire). Knowing these attributes in
advance allows adaptation by setting contents
or imposing constraints on presentation level.
The system obtains relevant facts also by
sensors, i.e. by tracing the user’s movement.
Besides facts, system assumptions provide
relevant context factors, such as Design
choices and Dynamic user modeling. The
former specify the system’s behavior in
relation to certain contextual conditions and
the latter is based on the correct interpretation
of the user’s action, interest and knowledge.
The discourse context contains both
communicative context and textual context.
Architecture for context adaptation is based on
a component based system. Two modules, the
Visitor’s Models and the Interaction History
store the facts, that the system knows about
each user and record both the places visited
and the information received. The Physical
Organization Knowledge base contains a
description of the space in which a user exists
or acts. The information stored in these
modules makes up the context. Two rule-based
modules that realize the adaptive behavior, the
Input analyzer and the Compose Engine
exploit the context. The Input analyzer
interprets the user’s implicit and explicit input
and decides on whether a new presentation has
to be delivered. The latter decides on context
presentation. The respective rules are
organized in clusters. Each cluster is applied to
accomplish a certain task. This rule-based
system supports a prototyping approach:
changing the rules, not the system code, can
alter system behavior. The implementation of
this architecture is done by two location-
adaptive systems: Hyper-Audio [38] and HIPS
[39].

B. Informational Level viewpoint

From the informational development level
we meet systems capable of modeling and
handling context via integrating context-

repositories. The Context Fabric [1] is an
infrastructure for context-aware computing. It
provides a flexible and distributed context data
store, a context specification language for
declaratively stating and processing context
needs and a customizable privacy mechanism
to protect context data for end-users. The
context data store consists of two modules; the
local context data model and the physical data
store. In the logical context data model, the
context information is represented using four
concepts: entities, attributes, relationships and
aggregates. Relationships are special purpose
attributes used to express actions among
entities. The aggregates group existing entities
to form a more sophisticated and complicated
representation of context. The second module,
the physical data store, is actually responsible
for the physical storage of the contextual
information. The physical data store distributes
and duplicates contextual information
pertaining to a user in a more efficient way. It
places the context data close to their origin and
where it is likely to be used. The responsibility
administrating, maintaining and protecting
contextual information is therefore an open
issue.

The context specification language (CSL)
is a declarative way of stating context needs at
a high level, providing a clean programming
abstraction to the contextual information, in
the same way as SQL does for relational
databases. CSL statements are locally
processed by Context Services which can
handle queries such as “Notify me every time a
person enters a room”. A protection
mechanism for maintaining integrity and
privacy of context is focused on a restricted-
based CSL, which allows context queries to
return intentionally ambiguous answers.

V. REFERENCE MODEL
We envisage a reference model for context-

aware system by introducing specific
functionalities, which facilitate the context-
oriented design. Some functionalities, related
to context-aware system modeling, could
fullfil the specifications of the aforementioned
architectures. Such functionalities are listed
below:
- Sensing information processes, which are
operational modules that observe the status of
the sensors and process information received
by sensor networks. Such processes include
sensing techniques for information retrieval
and low-level information representation.
- Context based initiatives, which manage and
exploit contextual information. Such initiatives
comprise context acquisition, context
aggregation, context consistency, context

discovery, context query, context reasoning,
context quality issues, and context modeling.

Any initiative, which is considered
contextually interrelated with each other, is
appropriately placed in an abstract contextual
use case diagram forming a reference model
for a context-aware system. Such initiatives are
defined bellow:
Context acquisition: A mechanism to obtain
context data from diverse context sources.
Context acquisition could be colligated with
hardware sensors, which context data are
conformed by a low-level data model
Context aggregation: A mechanism that can
provide a persistent storage for distributed
context and guarantees integrity of context. In
case of a shared context model, the context
aggregation sustains a basis to merge
correlated contextual information.
Context consistency: Context consistency
enables the coherence of dynamically changing
distributed context models. Such mechanism,
regarded as extended context aggregation
functionality, sustains the structure (e.g.
relationships among conceptual entities) of the
contextual model in higher levels of
abstraction.
Context discovery: The aim of context
discovery is to locate and access contextual
sources in terms of serving context requests
(e.g. seeking the appropriate contextual
information pertinent to an entity). Context
discovery includes issues about service
description, advertisement and event
subscription.
Context query: By exploring contextual
information, residing in distributed context
repositories, a reference model needs high-
level mechanism for posing queries without
explicitly handling underlying data
manipulation. Complex context retrieval tasks
(e.g. queries as “list all persons in the same
conference hall whose presentation is at the
same time with mine”) must be transparent to
end-users. Context query mechanism should
pose design issues as context query language,
query optimizations, trigger messages and
definitions of constraints related to context
acquisition.
Context reasoning: Context can be elaborated
with reasoning mechanisms. Context reasoning
is a process which based on a-priori known
context inferences new context, previously
unidentified. Reasoning tasks is oriented to
check context consistency and deduce high-
level context. Such tasks could be
implemented using logical schemes as first-
order predicates and description logic.
Context quality indicators: Context data can
come from heterogeneity context sources such

as sensors and software services. The lack of a
universal context model and the application-
specific representation of the contextual data
distort the consistency of the sensed
information. A mechanism for pertaining
predefined sets of quality indicators related to
contextual information is of high importance.
Such issues may be resolution, accuracy,
repeatability, frequency and staleness of
context.
Context modeling: Context model outlines an
expressive scheme for context representation
and context interpretation. Existing context
models vary in the expressiveness they support
and in the abstraction level of the presentation
of the conceptual objects. Context model is
based on capturing general features of context
entities as properties (e.g. location,
temperature) and interrelations between
contextual objects (e.g. spatial relations).
Complex context models may exploit the
notion of a context meta-model with which any
dependencies, aggregations and classifications
of conceptual objects could be described (e.g.
UML meta-model can define context
constraints between user elements related to a
task). A uniformed context model could
facilitate context sharing and semantic
interoperability.

By combining such functionalities, we
illustrate the reference model as a use case
diagram which incorporates the sensing
techniques and the context initiatives. Figure
15 depicts the reference model.

sensing
information

low-level
model

acquisition

aggregation
consistency

discovery

query

quality

reasoning

model

meta
model

«imports»

«uses»

«uses»

«extends»

«uses»

«extends»

«imports»

«uses»

«uses»

«uses»

«uses»

Fig.15. Reference model Use Case Diagram

According to this reference model, we
logically place the aforementioned
architectures on the table I. The functionalities,
related to context awareness regarding to
architectures, are illustrated in this table.

TABLE I
 FUNCTIONALITIES FOR CONTEXT AWARENESS

system/model functionalities
Contextor
Meta-controllers
 Assosiation Model [11]
Activity-centric
sCAP
CAPEUS
Merino
WASP
CoBrA
IrisNet
My Campus
UbiqtOS
RAUM
HIPS,Hyper-Audio
Context Fabric

CSLinformational

discovery
acquisition
quality
reasoning

consistency
acquisition
query

Context Modeling

Sensor Based Architectures

Context-Aware Architectures

meta model
model
low-level model
sensing data
acquisition
aggregation

operational

VI. OPEN ISSUES
A long-term goal of system architectures is

making sensors and context platforms flexible
and scalable enough to be widely adopted in
various context-aware applications. Aiming at
Human-Computer Interaction, context-sensing
requirements in context-aware computing
applications take into account the fact that
sensors are highly distributed and their
configuration is highly dynamic. Based also on
the assumption, that the more complex context
model can be decomposed into simpler discrete
facts and events, many context models propose
a top-down systematic approach providing a
clear path letting computers understand context
in human-like ways. Issues about privacy and
distribution of context information,
conforming to an appropriate distribution
model of partitioning and replication context,
are open while autonomous configuration
schemes for sensors, providing service
adaptation, are equally crucial. Designing
contextual data format and network protocols
to allow interoperability by supporting
different types of sensors and finding the right
balance of developing a universal context
model and smart infrastructures are challenges
for future context - services. Many systems
should also take into consideration the quality
of context represented into a model supported
by a meta-model scheme of context. Finally,
an open issue is definition of a context
prediction method supporting the proactivity of
context-services in a proactive environment
which associates «similar» context models.

REFERENCES

[1] Jason I.Hong, “The Context Fabric: An
Infrastructure for Context - Aware
Computing”, CHI 2002, April 20 -25, 2002,
Minneapolis, Minnesota, USA. ACM 1-58113-
454-1/02/0004
[2] Joëlle Coutaz, Gaëtan Rey, “Foundations
for a theory of contextors”, CLIPS-IMAG,BP
53 France

[3] Bob Kummerfeld, Aaron Quigley, Chris
Johnson, Rene Hexel, “Merino:Towards an
intelligent environment architecture for multi-
granularity context description”, User
Modeling for Ubiquitous Computing, 2003
[4] Vagan Terziyan, Oleksandra
Vitko,”Bayesian Metanetworks for Modeling
User Preferences in Mobile Environment”,
University of Jyvaskyla, Finland
[5] James L.Crowley, Patric Reigner,”An
architecture for Context Aware Observation of
Human Activity”, Project PRIMA, INRIA
Rhone Alpes, France.
[6] James L.Crowley, Patric Reigner, J.
Coutaz, G. Rey, “Perceptual Components for
Context Aware Computing”, UBICOMP 2002,
International Conference on Ubiquitous
Computing, Goteborg, Sweden, September
2002
[7] Huandong Wu,Mel Siegel, Sevim
Albay,“Sensor Fusion for Context
Understanding”, Robotics Institute, Carnegie
Mellon University,IEEE Instrumentation and
Measurment Technology Conference
Anchorage, AK, USA, 21-23 May 2002
[8] Michael Beigl, Tobias Zimmer, Christian
Decker,“A Location Model for Communication
and Processing of Context”, TecO, University
of Karlsruhe, Karlsruhe, Germany
[9] Beigl M, Gellersen HW, Schmidt A.,
“MediaCups: Experience with design and use
of computer-augmented everyday objects”,
Computer Networks 2001; 35(4):401-409
[10]Beigl M. “Memoclip:A location based
rememberance appliance”,Proceedings 2nd
International Symposium on Handheld and
Ubiquitous Computing (HUC2000), Bristol,
UK 2000:230-234
[11]Karen Henricksen, Jadwiga Indulska,
Andry Rakotonirainy, “Modeling Context
Information in Pervasive Compiting Systems“,
The University of Queensland, Australia,2002
[12]Anthony Jameson,”Modeling Both the
Context and the User”, Department of
Computer Science, University of Saarbrücken,
Germany.
[13] Suman Nath, Yan Ke, Phillip
B.Gibbons,Brad Karp, Srinivasan
Seshan,”IrisNet:An Architecture for Enabling
Sensor-Enriched Internet Service”,Intel
Reaserch Pittsburgh, Carnegie Mellon
University, IRP-TR-02-10,December 2002,
[14] Diego Rios,Patricia Dockhorn Costa,
Giancardo Guizzardi, Luis Ferreira Pires, Jose
Concalves, Pereira Filho, Marten von
Sinderen,”Using ontologies for Modleing
context-aware services platforms”, University
of Twente, The Netherlands.
[15] WASP Project, [http://www.freeband.nl/
projecten/wasp]

[16] Harry Chen, Tim Finin, Anupam
Joshi,”An Intelligent Broker for Context-Aware
Systems”,University of Maryland,Baltimore
[17] Richard W.De Vaul, Alex Sandy
Pentland,”The Ektara Architecture: The Right
Framework for Context-Aware Wearable and
Ubiquitous Computing Applications”, The
Media Laboratory, Massachusetts.
[18]Florian Michachelles, Michael
Samulowitz, ”Smart CAPS for Smart Its –
Context Detection for Mobile Users”.
[19]SmartIts, [http://www.smart-its.org]
[20] Guanling Chen, David Kotz, “A survey of
Context Aware Mobile Computing Research”,
Dartmouth Computer Science Technical
Report TR2000-381.
[21] K. El-Khatib, G.v.Bochmann,“Agent
Support for Context – Aware Services and
Personal Mobility”,University of Ottawa,
Canada
[22] Norman M.Saden, Enoch Chan, Linh
Van,”MyCampus: An Agent-Based
Environment for Context-Aware Mobile
Services”, Carnegie Mellon University
[23] Daniela Petrelli, Elena Not, Massimo
Zancanaro, Carlo Strapparava, Oliviero
Stock,”Modelling and Adapting to Context”,
Cognitive and Communication Technology
Division. ITC-irst,Trento, Italy.
[24] Akio Sashima,Koichi Kurumantani,
“Seamless Context-Aware Information Assists
Based on Multiagent Cooperation”,Cyber
Assist Research Center(CARC),Japan
[25] Christos Efstratiou, Keith Cheverst, Nigel
Davies, Adrian Friday, “An Architecture for
the Effective Support of Adaptive Context
Aware Applications”, Distributed Multimedia
Research Group, Lancaster University.
[26]Shiow-yang Wu, H.S. Cinatit Chao,
“Event Engine for Adaptive Mobile
Computing”, National Dong Hwa University,
Taiwan, R.O.C.
[27] Bill n. Schilit, Norman Adams,Roy Want,
“Contewxt Aware Computing Applications”.
[28] Olga Ratsimor, Sethuram, Balaji
Kodeswaram, Anupam Joshi, Tim Finin,
Yelena Yesha, “Numi: Collaborative Mobile
Data Management in Infostation Networks”,
Baltimore.
[29] Michael Samulowitz, Florian
Michahelles, Claudia Linnhoff-Popien,
“Adaptive Interaction for Enabling Pervasive
Services”, University of Munich,2001
[30] Tatsuo Nakajima, “Pervasive Servers: A
framework for creating a society of
appliance”, Pre Ubiquit Comput (2003) 7:
182-188,DOI 10.1007/s00779-003-0222-2
[31] Sandeep Adwankar, Venu Vasudevan,
“Mobile Agent based Pervasive System
Manager for Enterprise Network”, Mobile

Platforms and Services Lab, Motorola Labs.
[32] Ting Liu, Margaret Martonosi, “Impala: A
Middleware System for Managing Automatic,
Parallel Sensor Systems”, Princeton
University,2003
[33] B. De Carolis, S. Pizzuto, I. Palmisano, A.
Cavaluzzi, “A Personal Agent Supporting
Ubiquitous Interaction”, Intelligent Interfaces,
Department of Informatics, University of Bari,
Italy.
[34] Paul Preko, Mark Burnett, “Activities,
context and ubiquitous computing”, 2002
Elsevier Science PII: S0140-3664(02)00251-7
[35] Philip Gray, Danile Salber, “Modeling
and Using Sensed Context Information in the
Design of Interactive Applications”, University
of Glasgow, Scotland, Springer-Verlang Berlin
Heindelber 2001-LNCS 2254,pp. 317-
335,2001.
[36] Wang, R., Reddy, M.P., Kon, H.
“Towards quality data : An Attribute-based
approach.” Decision Support System 13
(1995) 349-372.
[37] Smith, Welty, McGuinness, “Owl web
ontolog language guide”,
[http://www.w3c.org/TR/owl-guide/],2003
[38] Petrelli D, Not E, Sarini M,Strapparava
C,Zancanaro M, “HyperAudio = location
awareness + adaptivity”, In: Extended
Abstract CHI’99. Pittsburgh, May, 1999;21-
22.
[39] Benelli G, Bianchi A, Marti P, Not E,
Sennati D, “HIPS: hyper-interaction within the
physical space”. In : IEEE Multimedia System
’99. Firenze, 1999; 2:1075-1078.
[40] ”Architectures for Ubiquitous Systems”,
Technical report, Number 527, UCAM-CL-
TR-527, ISSN 1476-2986, United
Kingdom,2002
[41] G.G. Abowd and A.D. Key, “Towards a
better understanding of context and context-
awareness” Technical Report
[42] JESS, The rule engine for the Java
Platform, [http://herzberg.ca.sandia.gov/jess/f/]
[43] IOS Widgets, [http://mdp.artcenter.edu/
~vanallen/ios1/2004sp/ios1_wk02d.html]

