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Abstract— We consider the uplink power control problem in a single cell, multi-user, CDMA wireless data system and formulate it as a 

cooperative game. We use the Nash bargaining solution concept, in order to determine the socially optimum solution, which is both 

Pareto efficient and fair. In our formulation, the BS plays the role of the arbitrator, i.e., solves the power control problem, and 

broadcasts the relevant information to all users in order to enforce convergence to the optimal operating point. The comparison of the 

cooperative scheme to the non-cooperative scheme shows significant reduction in the transmission power of the mobile terminals. 
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I.  INTRODUCTION 

WCDMA has been widely adopted as the air interface technology for third generation (3G) networks [1]. WCDMA is based on 

Direct Sequence CDMA (DS-CDMA), which is a spread spectrum technology where user signals are spread over the entire 

transmission spectrum, and unique digital codes are used to separate them. It is well known that minimizing interference in CDMA, 

using power control, increases capacity, and also extends the battery lifetime of the mobile terminals [2], [3].  

A popular approach to the power control problem is based on game theoretic models [6], [9]. In such models, users adjust their 

transmission power in a distributed manner, according to their selfish interests. However, solutions that are achieved, i.e., Nash 

equilibria (NE) [7], are typically not efficient from a social perspective [9]. The introduction of pricing may yield more efficient 

operating points, however, fairness is often compromised [9]. Hence, the determination of both efficient and fair operating points in 

the power control problem remains an open issue.  

In this paper, we introduce a centralized power control scheme for CDMA networks, based upon cooperative game theory. Our 

intention is to, simultaneously, achieve fair and efficient operating points. Using the Nash bargaining solution (NBS) [8], we 

achieve a Pareto efficient and fair solution. The analysis that we carry out also proves that the solution provided in [12] is socially 

optimal, an issue that has been previously overlooked. In our formulation, the base station (BS) plays the role of the arbitrator, i.e., 

solves the power control problem, and broadcasts the relevant information to all users in order to enforce the optimal operating 

point. 
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The rest of the paper is organized as follows. In Section II, we provide the formulation of the power control game, and introduce 

the concept of the NBS. In Section III, we provide the solution to the optimization problem that corresponds to the NBS of the 

power control game. An iterative algorithm for the arithmetic calculation of the NBS is studied in Section IV. Section V provides 

results regarding the performance of the proposed scheme. In Section VI, we discuss related prior work. Lastly, in Section VII, we 

provide our conclusions. 

II. PROBLEM AND GAME FORMULATION  

Let I = {l, ..., N} be the set of users who share the uplink bandwidth of a CDMA cell. User i controls his transmitted power pi, 

which is chosen from Si = [0,+∞). Let p = (p1, …, pN) be a typical strategy (i.e., transmitted power) profile vector in the strategy 

space S = S1 × … × SN. We assume that user preferences are expressed through a utility function, which quantifies the level of user 

satisfaction for using the wireless resources (e.g., achieved QoS vs. energy consumption).  

Here, we adopt the popular utility function introduced in [9], which expresses the number of bits that are successfully received 

per unit of consumed energy. Let L be the length (bits) of a user frame, M the length of the frame with headers (M > L), and R the 

transmission rate (b/s). Then, the utility function ui: S → ℜ is  
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γi that denotes the signal-to-interference ratio (SIR) as seen by user i, is calculated as follows: 
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W is the chip rate, W/R denotes the CDMA processing gain, hi is the path loss from the mobile to the BS, and σ2 the additive white 

Gaussian noise (AWGN) power at the receiver. 

A. Non-cooperative Game Formulation 

In this section, we determine the NE of the game as in [9]. We first provide a definition of the NE. 

    Definition 2.1: A power vector p = (p1, …, pN) is a NE of the power control game if, for every i ∈ I, 

ui(pi,p-i) ≥ ui(p΄i,p-i) 

for all p΄i ∈ Si, where p-i is defined as the power vector that does not contain pi.  

Thus, at a NE, given the power levels of the other users, no user can improve his utility level by making individual changes to 

his transmitted power. p* = (p1
*, …, pN

*) ∈ S is said to constitute a NE [7] iff 
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The utility ui(.) of user i is maximized when its first derivative with respect to pi is zero, or, 
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For pi = 0, we observe that ∂ui/∂pi = 0. However, it is easy to see that pi = 0 cannot be a maximizer of ui(.). This leads to the fact 

that, at the NE, all users enjoy equal non-zero SIR γ*, which derives as a solution to the equation 

γγ 5.015.0 eM =+ , (4) 

which can be readily solved numerically. Note that in order to have a feasible power vector, γ* must satisfy the following 

inequality [9]: 
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The fact that all users enjoy the same SIR γ*, leads to the result that all users reach the BS with the same power, i.e., hipi
 * = hjpj

 * 

= q* for every i, j ∈ I. From the above, the equilibrium utility ui
* for user i is  
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where v(q) = (1/hi)ui(q/h1,…,q/hN), ∀ i ∈ I.  

Hence, at the equilibrium, all users achieve SIR γ*, but transmit with different power depending on their path gain to the BS. As 

a result, a user that suffers great path losses consumes more energy in order to reach the equilibrium SIR. For this reason, user i 

achieves utility v(q*) discounted by the corresponding path loss hi.  

Note that the discussed NE is fair, as all users achieve the same SIR (throughput). However, as reported in [9], this equilibrium 

is not Pareto optimal, i.e., it is possible to find another point, which yields strictly superior utility for all users. Specifically, it was 

shown that if all users simultaneously decrease their transmission power by a given factor, then all users may benefit by an increase 

in their utilities. A formal definition of Pareto optimality follows:  

    Definition 2.2: The point u ∈ U, where U is the set of achievable utilities, is said to be Pareto optimal if for each u′ ∈ U, u′ ≥ u, 

then u′ = u. 

B. Cooperative Power Control  

We use cooperative game theory in order to provide a fair and efficient solution to the power control game. User i, apart from 

his utility function ui defined on S, has also a minimum desired utility ui
0, termed as status quo utility. This utility denotes the 

minimum utility that he can achieve without cooperation – here ui
0 = hiv(q*) = ui

* (see (6)). We denote the status quo of the game by 

u0 = (u1
0, …, uK

0).  

Since, in the considered game, the status quo is not Pareto optimal, a Pareto optimal solution would be acceptable by all users 

(all users would enjoy greater utility). One typical solution concept for obtaining Pareto optimal outcomes is the bargaining solution 

introduced by Nash [8], defined below. 

    Definition 2.3: A mapping F: G → ℜN, where G denotes the set of achievable utilities with respect to the initial agreement point 

u0, is said to be a NBS, if the following hold: 

1) F(U, u0) ∈U0, where U0 is the set of achievable utilities that are superior to the status quo utility. 

2) F(U, u0) is Pareto optimal. 
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3) F satisfies the linearity axiom if φ: ℜN → ℜN, φ(u) = u΄ with u΄j = ajuj + bj, aj > 0, j = 1, …, N, then F(φ(u), φ(u0)) = φ(F(u, 

u0)). 

4) F satisfies the irrelevant alternatives axiom if V ⊂ U, (V, u0) ∈ G and F(U, u0) ∈ V, then F(U, u0) = F(V, u0). 

5) F satisfies the symmetry axiom if U is symmetric with respect to a subset J ⊆ {1, …, N} of indices (i.e., u ∈ U and i, j ∈ J, 

then if u0
i = u0

j then F(U, u0)i = F(U, u0)j for i, j ∈ J). 

 

Each vector p in the bargaining solution set satisfies uj(p) > u0
j, ∀ j ∈ I and solves the following optimization problem. 
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III. FAIR AND EFFICIENT POWER CONTROL 

In this section, we provide a characterization of the NBS of the power control game. Consider a linear transformation φ: ℜN → 

ℜN, where φ(u) = v, vi = (1/hi)ui,∀ i ∈ I. It is easy to see that the transformed utility functions vi will be of the following form: 
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The next lemma states that the NBS is an equal-SIR operating point. 

    Lemma 3.1: The NBS of the power control game, with the utility functions in (7), is characterized by equal SIR for all users. 

    Proof: From the definition of the utility function in (7), it is easy to see that the utilities of the users are symmetric. Moreover, we 

observe that status quo utilities are equal for all users, i.e., vi(q*,…,q*) = v0
i = v0

j = v*, ∀ i, j ∈ I. It is, then, straightforward from the 

fifth axiom of the NBS (i.e., the symmetry axiom) that the NBS of the given game should yield an operating point q where vi(q) = 

vj(q), ∀ i, j ∈ I, which implies that qi = qj = q. Then, from (2), it is easy to verify that all users will enjoy the same SIR.    ■ 

From the above, we may redefine the optimization problem whose solution is the NBS, as follows: 
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It is easy to see that, when qi = qj = q, vi(q) = vj(q) = v(q), where  
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Hence, the problem (P) reduces to the following, much simpler, problem: 

(P′)    { }*)(:    ),(   max vrvSrqqv j
q
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The following lemma states that the objective function v(q) of problem (P′) has a unique positive maximizer. 

    Lemma 3.2: There is a unique positive power q~  that maximizes function v(q). 

    Proof: At the point(s) where function v(q) is maximized the first-order optimality condition must hold, i.e., dv(q)/dq = 0, or 
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We observe that for q = 0, the first-order optimality condition is satisfied. However, v(0) = 0, while v* > 0, which violates the 

first axiom of the NBS, i.e., that each user has to achieve a utility strictly superior to his status quo utility. Thus, we may drop 

factors of the above equation that are zero for q = 0, and, thus, derive the simpler condition below: 
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Equivalently, we may require that r(q) = 0, where function r(q) is defined as follows: 
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We will now prove that the function r(q) has a unique root in the interval (0,+∞). It is easy to see that the left-hand side of 

equation (8) is increasing in the interval [0,σ2/(N-1)] and decreasing in the interval [σ2/(N-1), +∞). Moreover, the right-hand side of 

equation (8) is increasing in the interval [0,+∞).  

The derivative of the function r(q) is calculated as follows: 
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In real-life situations, the AWGN power σ2 << 1 (Watt), in which case, we observe that the above quantity is positive, i.e., r(q) is 

increasing, at q = 0. Moreover, r(0) = 0, hence, there is a sufficiently small positive scalar ε for which r(ε) > 0, which means that at 

ε the left-hand side of (8) dominates the right-hand side of the equation. On the other hand, we observe that, for q > [(M-1)/(N-

1)]σ2, r(q) < 0. This can be easily derived if we apply the known inequality ex – 1 > x, ∀ x > 0, in (9). Thus, for values of q in the 

interval [[(M-1)/(N-1)]σ2, +∞), the right-hand side of (8) dominates the left-hand side of the equation. As a result, there can be but 

one point of intersection of the left- and right-hand side quantities in (8), for q > 0, i.e., function r(q) has a single positive root. 

The root, q~ , of r(q) is a point where the first-order optimality condition for problem (P′) is satisfied. Thus, since q~  is the 

unique positive root of r(q), as already shown, q~  must be a global maximum or a global minimum of the function v(q), for q ∈ (0, 

+∞). However, we showed that there is a small scalar ε > 0 such that r(ε) > 0, i.e., v(q) is increasing, while for q > [(M-1)/(N-1)]σ2, 

r(q) < 0, i.e., v(q) is decreasing. Hence, since q~ ∈ [ε, [(M-1)/(N-1)]σ2], it is implied that point q~ is a global maximum of function 

v(q) in the interval (0, +∞).    ■ 
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In the following lemma, it is stated that the power q~  that maximizes the function v(q) is a feasible solution of problem (P′), i.e., 

at q~  every user achieves a utility that is strictly superior to his status quo utility. 

    Lemma 3.3: The positive scalar q~  that maximizes function v(q) is a feasible solution of problem (P′). 

    Proof: As already discussed in Section II, the non-cooperative power control game has a unique NE, at which all users achieve 

the same SIR γ*, which solves (4). As a result, qi
* = qj

* = q*, and vi(q*) = vj(q*) = v(q*), ∀ i, j ∈ I. Hence, it suffices to show that 

v(q*) < v( q~ ). Since q~  is the maximizer of v(q), it is obvious why inequality v(q*) ≤ v( q~ ) always holds. However, in order to 

complete the proof we need also to show that v(q*) ≠ v( q~ ) or, equivalently, that q* ≠ q~ , i.e., that q* is not a maximizer of the 

function v(q). If we assume that q* maximizes v(q), then q* must be a root of function r(q). If we take r(q) at q* and use (4), we have 

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

+−

−−
=

2*

*
**

)1(
)1(

2
)(

σ
γ

qN
qNMqr  

Hence, since q* > 0, r(q*) < 0. This implies that q* can never nullify the derivative of v(q), and, thus, can never be equal to q~ . 

As a result, the status quo utility v(q*) is strictly inferior to the utility at point q~ .    ■ 

The next theorem states that the problem (P′) has a unique solution according to the NBS concept. 

    Theorem 3.1: There exists a unique equal-SIR NBS in the power control game, at which every user reaches the BS with power 

q~  that is the positive root of (9). 

    Proof: The proof readily follows for Lemma 3.1, 3.2, and 3.3.  ■ 

We, thus, proved that the NBS is an equal-SIR operating point, at which the user utility function is maximized. This result has 

been proposed in [12], however, it has not been examined whether such a solution is Pareto optimal, which is one of the results 

presented in this paper. 

The BS executes this algorithm every time a new user attaches to the system, or when an active user disconnects. After such 

events, the updated optimal received power q~  is broadcast so that every attached user i adjusts his transmission power ip~ = ihq /~  

accordingly1.  

An important issue is how the BS can enforce such an operating point. The NBS provides Pareto optimality, but cannot 

guarantee stability; at the NBS, it is possible for a player to benefit in the detriment of the other users by making an appropriate 

change in his own strategy (contrary to the NE that is by definition a stable operating point).  

A possible solution based on the “punishment” of deviating users has been proposed in [11]. The BS, upon detecting a user, 

which exceeds the optimum received power q~ , increases intentionally his BER, by flipping a portion of the bits of the specific 

user. Hence, an increase in power only yields extra power consumption, with no BER improvement, which indicates that the utility 

of the user will decrease. This implies that no rational user would deviate from the NBS transmitted power. 

                                                            
1 User i is capable of inferring the path loss hi to the BS by means of beacon signals that are broadcast by the BS with a given power. 
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IV. NBS DETERMINATION ALGORITHM 

 

In this section, based on the derived results, we provide a simple iterative algorithm for the determination of the discussed NBS. 

As already mentioned, the NBS of the power control game, i.e., the solution to the problem (P′), corresponds to the positive root of 

(9). In the proof of Lemma 3.2, it was shown that the positive root q~  of function r(q), i.e., the NBS power, lies in the interval  [ε, 

[(M-1)/(N-1)]σ2], where ε is a sufficiently small positive scalar. Hence, since we have determined an interval where the root is 

located, we proceed with the definition of a simple numerical method for deriving the root. In the current study, we adopt the 

bisection [13] method for the determination of the pursued solution. The specific method guarantees convergence to the root, given 

that the function in question is continuous in the interval that is examined. Such condition is readily satisfied by function r(q). 

Let qa and qb be positive scalars, such that qa < q~  < qb. Below we summarize the bisection-based NBS determination 

algorithm: 

1. Set qa = 0, and qb = [(M-1)/(N-1)]σ2, 

2. Set qc = (qa + qb)/2, 

3. If r(qc) = 0, then go to step 6, else go to step 4, 

4. If r(qc)r(qb) < 0, then set qa = qc, else set qb = qc, 

5. If |qb – qa| < δ, go to step 6, else go to step 2, 

6. q~  = qc. Finish. 

 

The constant δ in step 6 is a sufficiently small positive scalar, used as a termination criterion of the iterative algorithm. Note that 

the choice of the initial value of qa in step 1 is not in accordance with the discussion above regarding the interval where the root is 

located, i.e., that q ≠ 0. However, it can be easily observed that in the algorithm given above, qc may approach arbitrarily close to 0, 

but never reaches it, i.e., qc always stays in the interval (0, [(M-1)/(N-1)]σ2].  

The main advantage of the bisection method is its simplicity, and that convergence is guaranteed, given an interval that includes 

the root, and that the examined function is continuous in this interval. However, convergence is not very fast. There are other more 

elaborate methods for finding the roots of a function, which, in general, converge much faster. For the considered problem, we have 

assessed the performance of two other methods, namely the linear interpolation (regula falsi) and the Newton-Raphson method 

[13]. The linear interpolation always converges to the root but not always as fast as the bisection method, the speed of which is not 

affected by the number of users N. The Newton-Raphson converges much faster than the bisection and the linear interpolation 

method, however, convergence is not always achieved as the required conditions are not always met for the considered problem. 

Especially for small values of N the Newton-Raphson method systematically fails to converge. 

V. PERFORMANCE ANALYSIS 

In this section, we provide numerical results from the performance analysis of the proposed scheme. Table I gives the 

parameters used in our analysis, which are similar to [9]. 
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TABLE I.  THE LIST OF PARAMETERS FOR THE SIMULATED SINGLE-CELL CDMA SYSTEM 

pmax, maximum power constraint 2 Watts 

M, total number of bits per frame 80 

L, number of information bits per frame 64 

W, spread spectrum bandwidth 106 Hz 

R, bit rate 104 bits/second 

σ2, AWGN power at the receiver 5×10-15 Watts 

modulation technique non coherent FSK 

 

The discussed power control game with the given parameters, at the NE, achieves a SIR value γ* ≈ 12.42, and from (5) it can 

support up to 9 users [9]. Hence, we compare the two different approaches (non-cooperative and cooperative schemes) for user 

population N ∈ {2, …, 9}. 
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Figure 1.  Utility achieved at the NE and NBS operating points 
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Figure 2.  Received power at the NE and NBS operating points 
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Figure 3.  Signal-to-interference ratio (SIR) at the NE and NBS operating points 
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Figure 4.  Maximum cell radius at the NE and NBS operating points 

As shown in Fig. 1, the user utility (regardless of path losses, i.e., v(q) = (1/hi)ui(q,…,q), for each i ∈ I) achieved with the 

proposed cooperative solution is significantly greater compared to the non-cooperative solution. This is due to the fact that users 

have to reach the BS with significantly lower power, as depicted in Fig. 2. Notice that this power reduction becomes apparent as the 

number of users increases, which is due to the inefficiency of the non-cooperative power control scheme, when the user population 

approaches its limit (see (5)). However, as users transmit with lower power with the cooperative scheme, the achieved SIR is also 

reduced, i.e., users enjoy lower throughput, compared to the non-cooperative scheme, as shown in Fig. 3. Nevertheless, such 

deterioration is rather minor compared to the major energy savings that are achieved. 

We also study the system performance regarding the maximum cell radius. We assume a simple path loss model, as in [10], i.e., 

hi = K1/di
4, where K1 = 0.097 and di denotes the distance between the user and the BS. Given that every user can transmit with a 

power bounded by a maximum value pmax (see Table I), the distance di from which user i can reach the BS is also bounded. Let dmax 

denote this maximum distance, which is easily calculated as  

4 max1
max q

pK
d = , (10) 

where q is q* or q~  depending on whether we examine the system at the NE or the NBS operating point. Fig. 4 shows that the 

cooperative scheme achieves a considerable increase in the maximum cell range compared to the non-cooperative scheme. 
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Figure 5.  NBS Received power 
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Figure 6.  NBS Signal to interference ratio 
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Figure 7.  NBS Maximum cell radius 

Another important feature of the cooperative scheme is that there is no limit in the number of users in the cell, as is the case of 

the non-cooperative scheme (see equation (5)). In Fig. 5, we see the NBS received power for a population of users ranging from 2 

to 100. Fig. 6 depicts the achieved SIR. We observe that, as the number of users increases, the SIR approaches 0. This is 

anticipated, because the capacity of a CDMA system is finite, thus, as more users share the available bandwidth, the individual 

share that they receive becomes smaller. Lastly, Fig. 7 depicts the maximum cell range achieved with the cooperative solution. 
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VI. RELATED WORK 

In this section, we provide a brief overview of related work on game theoretic power control in CDMA networks. In [9], the 

power control problem has been formulated as a non-cooperative game, with a unique, however, inefficient NE. With the 

introduction of pricing, a Pareto improvement is achieved, but a Pareto optimal operating point, still, was not reached. Moreover, 

the fairness characteristic of the NE (equal SIR for all users) is compromised. Mobile stations that encounter high path loss are 

charged more and receive fewer resources, compared to users close to the BS. This is termed “near-far unfairness” [4]. Similar 

approaches are described in [4], [5], and [10]. 

In [11], the concept of refereed power control is introduced. The BS computes an optimum power allocation that then 

communicates to the users, which transmit accordingly. Cheating users (i.e., users that transmit with higher power) are punished – a 

portion of the user data bits is flipped. In [12], the notion of network assisted power control is introduced. Conceptually, it is the 

same approach as the one proposed in [11]. In both [11] and [12], the optimum power allocation is defined as an equal SIR 

allocation. The optimum operating point is the one that maximizes the user utility function (for equal received powers, or SIRs). 

However, the works in [11] and [12] lack a formal analysis on the efficiency of the proposed results. Specifically, the authors in 

[11] conjecture that the resulting power allocation is Pareto optimal. In [12], such issue is not addressed. Our main contribution is 

the methodology followed for deriving the optimal power allocation, as we employed the NBS that by definition yields Pareto 

optimal and fair operating points. Moreover, in contrast to previous relevant works, we studied the implementation details of the 

considered scheme and provided a low complexity algorithm for the NBS operating point determination. 

VII. CONCLUSIONS 

In this paper, we have proposed a cooperative solution to the power control problem for CDMA wireless data networks, based 

on the Nash bargaining solution. Such a solution, contrary to non-cooperative game settings, guarantees Pareto optimal and fair 

outcomes. Specifically, we have achieved a solution where all users enjoy the same SIR.  

The anticipated Pareto improvement achieved through the cooperative scheme was evident, especially when the non-

cooperative scheme reached its user population limits. We have also noticed that the operating points of the proposed scheme are 

characterized by significantly reduced transmitted power, and a rather limited decrease of the SIR. This resulted to a drastic 

decrease in energy costs, while the achieved throughput was slightly compromised. Furthermore, due to the transmitted power 

decrease, the maximum range of the cell was increased compared to the non-cooperative case. We concluded the study of the 

cooperative solution by investigating its implementation details. In the future, we would like to study the tradeoff between the 

number of admitted users and the obtained system performance. Moreover, we plan to extend our study to multi-cell environments 

and apply findings from cooperative game theory in order to enhance existing power control schemes. 

ACKNOWLEDGEMENTS 

The first author would like to thank the Alexander S. Onassis Public Benefit Foundation for its financial support. 

REFERENCES 

[1] H. Holma and A. Toskala, “WCDMA for UMTS”, Wiley, New York, 2002. 

[2] R. D. Yates, “A framework for uplink power control in cellular radio systems”, IEEE JSAC, 13(7), pp. 1341-1347, 1995. 



-12- 

[3] J. Zander, “Performance of optimum transmitter power control in cellular radio systems”, IEEE Transactions on Vehicular Technology, 41(1), pp. 57-62, 

1992. 

[4] M. Xiao, N. B. Shroff and E. K. P. Chong, “A Utility-based Power-Control Scheme in Wireless Cellular Systems”, IEEE/ACM Transaction on Networking, 

vol. 11, No 2, pp. 210-221, 2003 

[5] T. Alpcan, T. Başar, R. Srikant and E. Altman, “CDMA Uplink Power Control as a Noncooperative Game”, Wireless Networks 8, pp. 659–670, 2002 

[6] H. Ji and C. Huang, “Non-cooperative uplink power control in cellular radio systems”, Wireless Networks, (4), pp. 233-240, 1998. 

[7] D. Fudenberg and J. Tirole, “Game Theory”, MIT Press, Cambridge (MA), 1991. 

[8] J. F. Nash, “The Bargaining Problem”, Econometrica, 18, pp. 155-162, 1950 

[9] C. U. Saraydar, N. B. Mandayam and D. J. Goodman, “Efficient power control via pricing in wireless data networks”, IEEE Transactions on 

Communications, Vol. 50, pp. 291 - 303, 2002 

[10] S. Gunturi and F. Paganini, “Game theoretic approach to power control in cellular CDMA”, Proc. IEEE Vehicular Technology Conference, Orlando, Oct 

2003. 

[11] A. B. MacKenzie and S. Wiker. “Game Theory in Communications: Motivation, explanation and application to power control”, Proc. IEEE Globecom, 

November 2001. 

[12] D. J. Goodman and N. B. Mandayam, “Network Assisted Power Control for Wireless Data”, Kluwer Mobile Networks and Applications 6, pp. 409–415, 

2001 

[13] S. C. Chapra and R. P. Canale, “Numerical Methods for Engineers”, McGraw-Hill, 1989 

 


