
A Distributed Algorithm for Sharing Web Cache Disk Capacity

George Alyfantis, Stathes Hadjiefthymiades, Lazaros Merakos, and Panagiotis Kostopoulos

Communication Networks Laboratory

Department of Informatics and Telecommunications, University of Athens

Athens 15784, Greece

{alyf, shadj, merakos, p.kostopoylos}@di.uoa.gr

Abstract

A decentralized game theoretic framework applied to Web caching is discussed. The interaction of multiple cli-

ents with a caching server is modeled as a non-cooperative game, in which clients are viewed as players, and the

caching server disk space as a resource for which players are competing. However, some clients may continuously

request new objects, thus, occupying a considerable portion of the cache disk, enjoying high hit rates. Such an ag-

gressive behavior may have significant impact to the overall cache performance, as few clients may monopolize the

total disk space, and the remaining clients may suffer the eviction of their “important” resources from the cache,

thus, experiencing numerous cache misses. Moreover, it is observed that the majority of hits in cache systems are

due to shared objects, i.e., clients tend to refer to a “pool” of common resources. The objective of the proposed

framework is to discourage monopolizing the cache disk space by a minority of clients, while rewarding clients that

contribute to the overall hit rate. The efficiency of the proposed scheme is evaluated through simulations.

1. Introduction

The use of web caches for reducing network traffic and download latency has rendered them an important com-

ponent of the Internet infrastructure. Algorithms devised for web caches need to exploit the specific characteristics

present in the request sequence for efficient performance. For example, it is observed from real proxy traces that

some clients, exhibiting “aggressive” behavior, tend to monopolize the cache disk space, enjoying high hit rates

[10]. However, at the same time, the other clients are confined to a restricted amount of disk space, and suffer the

eviction of “important” objects, thus, experiencing numerous cache misses. Conventional replacement algorithms

[9] apply global policies, i.e., treat all clients as a whole, without taking into account the behavior of individual cli-

ents, thus, proving incapable of providing the caching service in a fair manner.

As reported in [1], cache hits are mostly due to shared objects (“sharing hits”); the rest are termed “locality hits”.

That is to say, it is observed that clients tend to request objects that belong to a popular “pool” of objects, while the

rest of the objects are rarely requested more than once. In this paper, we discuss a distributed, game theoretic, algo-

rithmic framework capable of providing the caching service to the clients in a fair way, while also taking into ac-

count the contribution of each client to the overall performance of the caching system. Specifically, with regards to

the latter, the proposed system rewards clients that have fetched popular objects into the cache, allowing them to use

more disk space. In this paper we assume that the caching service is provided on a commercial basis (e.g., by the

ISP) and clients are charged for exploiting the resources (disk space) of such a commercial entity [12].

Clients are considered selfish, i.e., they do not collaborate with one another. There is not a single coordinating

entity regulating the access to the cache. The caching server communicates global information on the state of the

cache to the clients, e.g., free space currently left, and client specific information, e.g., the space that the client oc-

cupies into the cache. This information is delivered to the client embedded in HTTP responses. The next time the

client issues a request, he takes into account the information acquired from the previous HTTP response, in order to

determine whether it is worth requesting the caching of the requested object, or the induced cost is higher than the

corresponding benefit. In the latter case, the client sets the HTTP request header “cache-control: no-store” [9] de-

noting that, if the object is not already into the cache, the object that will be fetched from the origin server shall not

be cached.

The rest of the paper is structured as follows. We formulate the problem as a non-cooperative game in Section 2.

In Section 3, we study the existence and uniqueness of the Nash equilibrium. In Section 4, we provide an iterative

algorithm for decentralized convergence to the Nash equilibrium. In Section 5, we propose a variation of the theo-

retical iterative algorithm appropriately adapted to the caching game. Section 6 provides simulation results. In Sec-

tion 7, we discuss prior related work. Section 8 concludes the paper with a summary of our key findings as well as

directions for future work in this area.

2. Model Formulation

Let I = {l, ..., N} be the set of clients who share the resources of a caching server with disk capacity C. Client i

controls the cache capacity yi that he occupies so that he optimizes a certain performance measure. We assume that

yi is chosen from Si = [0,C]. Let y = (y1, …, yN) be a typical strategy profile (or cache disk space allocation) vector in

the strategy space S = S1 × … × SN and ∑
=

=
N

i
iyF

1

the total reserved cache capacity.

We assume that each client has a utility function. The utility function consists of benefit and cost parts, and quan-

tifies the level of user satisfaction for using the caching server. The cost function is influenced by the characteristics

of the caching system, e.g., the adopted pricing scheme. Each client is capable of computing his cost by some meas-

urement or feedback information from the system.

The utility function ui: S → ℜ of client i depends on the strategy profile y only through yi and F. We denote this

by ui(yi, F). Client i may maximize ui(yi, F) by controlling yi, given the total capacity C and the “aggregate” strategy

F of all clients. We assume that ui(yi, F) must have the following properties:

Al. ui(yi, F) is continuously differentiable with respect to yi.

A2. ∂ui(yi, F)/∂yi is strictly decreasing with respect to yi.

A3. ∂ui(yi, F)/∂F is non-increasing with respect to F.

The first two assumptions imply the strict concavity of ui with respect to yi. Let ∑
≠

−=
ij

ji yCC be the available

cache capacity seen by client i. Note that F = yi + C - Ci. Then, the response of client i for a given available capacity

is defined as

()ii
Sg

ii CCgguCr
i

−+=
∈

,maxarg)(. (1)

In other words, ri(Ci) is the optimal amount of cache space client i should occupy, which maximizes ui, if the

available capacity for i is Ci. We also make the following natural assumption on the response function of the client.

A4. Given any Ci such that 0 < Ci ≤ C, ri(Ci) < Ci

The above assumption holds true for many situations, where the cost function has a form of penalty (e.g., price)

that prevents the saturation of critical resources. An example utility function that is inline with the four assumptions

is the generalized power [2]:

() () ()FCyFyu i
iii −= β, (2)

which is interpreted as benefit () i
iy β divided by cost (C-F)-1. This type of utility function satisfies all four assump-

tions A1-A4, if 0 < βi ≤ 1.

In this paper, we propose a similar utility function that also takes into account the impact that a client has on the

overall performance of the caching system. Specifically, client i is associated with popularity index ai. This index is

calculated dynamically by the caching server and denotes the “popularity” of the objects that client i has fetched

into the cache. The popularity index for client i, ai, assumes values in the interval [0,1).

We assume that each cached object carries some meta-information to facilitate system operation. Specifically, for

each cached object j ∈ {1, …, K}, the caching server needs to know the client ij that brought the object into the

cache, the size sj of the object in bytes, and the number hj of times that the object was hit by clients other than client

ij. Then, the popularity factor ai for client i is calculated as

⎪
⎩

⎪
⎨

⎧
≠⋅⋅⋅

= ∑∑∑
==∈

otherwise

shshsh
a

K

j
jj

K

j
jj

Ij
jj

i i

 ,0

0 ,
11 (3)

where Ii is the set of objects that client i has brought into the cache.

We now define the utility function of client i as

() () () ii a
iii FCyFyu −−= 1, β . (4)

The proposed utility function is of similar form to (2), apart from the cost part. Specifically, the cost of client i is

discounted by the factor 1-ai. In other words, “popular” clients are charged less than clients that are not popular,

which gives them more freedom to use the disk space of the caching server.

Proposition 2.1: The utility function ui(.), for each i ∈ I, satisfies assumptions A1-A4.

Proof:

Assumption A1

It can be easily shown that the derivative of ui(.) with respect to yi, for each i ∈ I, is a continuous function of yi on Si.

Assumption A2

The second derivative of ui(.) with respect to yi, for i ∈ I, is negative, which means that A2 also holds.

Assumption A3

The second derivative of ui(.) with respect to F is non-positive, thus, A3 holds.

Assumption A4

Given a Ci, the optimality condition ∇ui = 0 yields

ii
ii

i
ii

Sy
CC

a
Fyu

ii

<
−+

=
∈ β

β
1

),(maxarg

which means that A4 also holds, and the result of the proposition follows. ■

Clients are selfish, implying that each client is interested only in maximizing his utility function. We assume that

ui is private information for client i, while other information (e.g., F, C) is public, provided by the caching server.

Then, given F, each client computes his best strategy by solving the following optimization problem (P).

(P)

()

⎪
⎪
⎩

⎪⎪
⎨

⎧

∈∈ IiSy
ts

Fyu

ii

ii
yi

 ,
..

, max

The fact that ui depends on y only through yi and∑
≠ij

jy , drives client i to consider all other clients as a single

adversary, and, thus, greatly simplifies the analysis. The vector y* = (y1
*, …, yN

*) ∈ S is said to constitute a Nash

Equilibrium (NE) [3] iff

Iiygguy
ij

ji
Sg

i
i

∈∀⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
+∈ ∑

≠
∈

 ,,maxarg ** . (5)

In other words, at the NE, given the disk space allocated to the other clients, no client can improve his utility by

making individual changes to his disk space allocation. In the following section, we study the existence and unique-

ness of a NE.

3. Existence and Uniqueness of the Nash Equilibrium Point

Due to the properties of the utility function, discussed in the previous section, the existence of the NE can be

guaranteed from Theorem 1 in [4]. For any NE, the set of fixed-point equations, deriving from the optimality condi-

tion ∇ui = 0, can be written as a system of equations, as follows:

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡
−+

−+

C

C
C

y

y
y

a
a

NNN β

β
β

β

ββ
ββ

......
......
.........
...1
...1

2

1

2

1

222

111

 (6)

The uniqueness of the NE can be proven if we consider the properties of the particular system.

Proposition 3.1: There exists one and only NE y* = (y1
*, …, yN

*)T for the game, which is feasible, i.e.,

∑
=

<
N

i
i Cy

1

* , with
1

1

*

1
1

1

−

= ⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

−
+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−

= ∑
N

j j

j

i

i
i aa

Cy
ββ .

Proof: The uniqueness of the NE stems from the fact that the system of fixed-point equations is linear and the

matrix of coefficients is full rank. The solution to the system y* = (y*
1, y*

2, …, y*
N)T is given as

1

1

*

1
1

1

−

= ⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

−
+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−

= ∑
N

j j

j

i

i
i aa

Cy
ββ , for each i ∈ I.

Then, by adding the elements of the solution vector, we obtain that

C
aa

Cy
N

j j

j
N

i i

i
N

i
i <

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

−
+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−

=

−

===
∑∑∑

1

111

*

1
1

1
ββ

Hence, the solution to the system is feasible and the result of the proposition follows. ■

Next, we consider fairness issues regarding the discussed NE. In this paper, we assume that fairness implies that

a client that is in greater “need” for cache disk space will indeed get more disk space at the NE. We define fairness

of the NE in terms of the client’s response function as follows (see also [5]).

Definition 3.1: Client i is in “greater need” for disk space than client j, if ri(C′) ≥ rj(C′) for all available capacity

C′ > 0. The NE y* = (y1
*, …, yN

*)T is said to be fair if, for every i and j, such that i is in greater need than j, yi
* ≥ yj

*.

Lemma 3.1: For any i, both ri(C′) and C′ - ri(C′) are monotone increasing for C′ > 0.

Proof: As shown in the proof of Proposition 2.1, the response function of client i is given as

C
a

Cr
ii

i
i ′

−+
=′

β
β

1
)(.

For 0 ≤ ai < 1, 0 < βi ≤ 1, it is easy to see that βi/(1 + βi - ai) > 0, thus, the response function of client i is mono-

tone increasing. We now see that

C
a

aCrC
ii

i
i ′

−+
−

=′−′
β1

1)(, thus, the function C′ - ri(C′) is also monotone increasing. ■

Theorem 3.1: The NE of the decentralized cache disk space allocation that is given by (P) is fair.

Proof: Consider two clients i and j such that ri(C′) ≥ rj(C′) for all available disk space C′ > 0. By the definition of

the NE and ri(.), we have that

() () ()**** ,maxarg ijiiii
Sg

i CrCrCCgguy
i

≥=−+=
∈

.

Since ****
i

ij
ji yFCyCC +−=−= ∑

≠

, i.e.,

*** FCCy ii +−= , the above inequality can be rewritten as () *** FCCrC iji −≥− . Note that C – F* > 0 by Proposi-

tion 3.1. From ()**
jjj Cry = , we have () *** FCCrC jjj −=−

By the monotone increasing property of function C′ - ri(C′) in Lemma 3.1, **
ji CC ≥ , and, thus,

jjii yCCFCCFy =+−≥+−= . ■

4. Convergence to the Nash Equilibrium Point

In this section, we describe an iterative Gauss-Seidel scheme for convergence to the NE. This scheme assumes

that clients operate iteratively in an asynchronous fashion. Following HTTP interactions, clients update their re-

served disk space, in order to maximize their utility functions with respect to the current state of the system. This is

compatible with the considered WWW caching scenario, where clients can only update their information on the

status of the system, after receiving an HTTP response.

At each step of the Gauss-Seidel scheme (i.e., each time a client performs a HTTP interaction), the client is in-

formed on the overall state of the system, as well as on his own status, and re-computes his optimal reserved disk

space. Only the client that interacts with the caching server updates his strategy. Such algorithms are called nonlin-

ear or coordinate descent [6] . The main idea behind this class of algorithms is that we fix all the components of y,

except for the ith component, and then maximize ui(y) with respect to yi. This procedure is repeated, thus, leading to

an iterative algorithm.

In the nonlinear Gauss-Seidel algorithm, the maximizations are carried out successively for each component.

Formally, the algorithm can be described as follows:

())(),...,(,),1(),...,1(maxarg)1(111 tytyytytyuty Niiii
y

i
i

+− ++=+ (7)

In (7), it is implied that the order by which clients update their strategies is predefined. However, this is not

obligatory. Order may be chosen randomly and changed dynamically [6]. Below, we show that, under the Gauss-

Seidel scheme, the vector of disk space capacities reserved by all clients, at step t, y(t) = (y1(t), …, yN(t))T, converges

to the unique NE y* = (y1
*, …, yN

*)T, as t → ∞. By (5), it is easy to show that client i, at step t+1, given the strategies

of the other clients should respond as follows:

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
−

−+
=+ ∑

≠

)(
1

)1(tyC
a

ty
ij

j
ii

i
i β

β (8)

Let ∑
=

=
N

j
j tytF

1

)()(be the total disk space reserved by all clients after step t, and define the following metric:

*

1

*)()())((FtFytytS
N

j
jj −+−=∑

=

y

It will be shown that S(y(t)) converges to 0 (i.e., individual strategies converge to the NE). We begin with the fol-

lowing lemma.

Lemma 4.1: Assume that client i performs the (t+1)th step, then

F(t+1) ≥ F* ⇒ yi(t+1) ≤ yi
*

and, conversely

F(t+1) ≤ F* ⇒ yi(t+1) ≥ yi
*

where

1

111

**

1
1

1

−

=== ⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

−
+⎟

⎟

⎠

⎞

⎜
⎜

⎝

⎛

−
== ∑∑∑

N

j j

j
N

j j

j
N

j
j aa

CyF
ββ

.

Furthermore, the above also holds true when all inequalities are strict.

Proof: By (8), the total disk capacity reserved by all clients after step (t+1) will be

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
−

−+
+=+ ∑∑

≠≠

)(
1

)()1(tyC
a

tytF
ij

j
ii

i

ij
j β

β

or

)(
1

1
1

)1(ty
a

a
C

a
tF

ij
j

ii

i

ii

i ∑
≠−+

−
+

−+
=+

ββ
β

If we now assume that F(t+1) ≥ F*, it is implied that

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

−+
−

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

−
+⎟

⎟

⎠

⎞

⎜
⎜

⎝

⎛

−−
−+

≥

≥

−

==

≠

∑∑

∑

ii

i
N

j j

j
N

j j

j

i

ii

ij
j

aaa
C

a
a

ty

β
ββββ

11
1

11
1

)(

1

11

so it follows that

*

1

1 1
1

1

)(
1

)1(

i

N

j j

j

i

i

ij
j

ii

i
i

y
a

C
a

tyC
a

ty

=
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

−
+

−
≤

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
−

−+
=+

−

=

≠

∑

∑

ββ

β
β

Similarly, it can be shown that yi(t+1) ≥ yi
, if F(t+1) ≤ F. For the case of strict inequalities the proof remains the

same. ■

The next lemma states that the sequence S(y(t)), t ∈ ℵ, is non increasing [7].

Lemma 4.2: Under the Gauss-Seidel scheme

S(y(t+1)) ≤ S(y(t)), for all t ∈ ℵ.

The following lemma states that the sequence S(y(t)) strictly decreases after a finite number of steps [7].

Lemma 4.3: For all t there exists a (finite) k > t, such that, if (y1(t), …, yN(t)) ≠ (y1
*, …, yN

*), then S(y(k)) < S(y(t)).

The convergence of the Gauss-Seidel to the unique NE is stated in the following theorem [7].

Theorem 4.1: Under the Gauss-Seidel scheme, the vector of cache disk space reserved by all clients at step t, y(t)

= (y1(t), …, yN(t))T, converges to the unique NE (y1
*, …, yN

) as t → ∞, i.e., limt → ∞ y(t) = y.

5. Distributed Algorithm Implementation

In the previous section, we showed that the Gauss-Seidel nonlinear iterative scheme converges to the NE. How-

ever, such scheme cannot be applied unmodified in the caching game, due to the following reasons: 1) a client by

performing an individual HTTP interaction can only demand (or not) the caching of the corresponding requested

object (i.e., the client can increase his reserved disk space by one object at a time), and 2) clients can only increase

their disk space, as if they exceed their equilibrium reservation, they are not capable of “shrinking” their area in the

disk, unless the disk space is full and the replacement algorithm (e.g., Least Recently Used – LRU) is invoked. For

this reason, we provide a variation of the scheme introduced in the previous section, taking into account the techni-

cal constraints.

5.1 Algorithm Variation

As an indicative example, consider that client i, at step t, uses the response function in (8), with the information

provided at the previous HTTP response (free disk space C - F, popularity index ai, and reserved disk space yi), in

order to update his reserved capacity yi(t). If the response function indicates that the client should respond with a

reserved capacity greater than his current reserved capacity, the client could only increase his disk space by the size

of the requested object, i.e., he cannot “fully” reply to the strategies of the other clients. Reversely, if the response

function instructs the client to reduce his occupied disk space, the client could only order the caching server not to

cache the requested object, i.e., keeping his reserved disk space constant.

Based on the above, we propose a variation of the iterative nonlinear Gauss-Seidel scheme. Let the initial vector

of reserved capacities for all clients be y(0) = (0, …, 0)T. Then, client i, at step t+1, given the delivered information

after the last HTTP response, computes his best response ri(t+1) = βi(1 + βi – ai)-1(C – F(t) + yi(t)) with respect to the

state of the system. Then, if ri(t+1) > yi(t), the client instructs the caching server to store the requested object (if not

already cached). Otherwise, the client instructs the caching server simply to fetch the object, but not to cache it. The

caching server returns the requested object and also updates the client on the current system state.

5.2 Implementation Issues

In this section, we discuss how the proposed asynchronous distributed algorithm can be implemented. We first

describe the requirements for a caching server to support the proposed functionality. For each cached object the

caching server maintains the following meta-information: 1) the ID of the client that triggered the caching of the

resource, 2) the number of times the object was hit by other clients, and 3) the size of the object. We can represent a

cached object through the record shown in Fig. 1.

data clientID hits sizetimestampURL

Figure 1. Structure of a cached object

Information on each client of the caching server needs also to be maintained. Specifically, the caching server has

to be up to date with the space that every client occupies, and his popularity factor (i.e., the numerator of the popu-

larity index in (3)). Hence, the caching server holds a record for each client as shown in Fig. 2.

clientID space popularity

Figure 2. Structure of a client record

We also assume that the caching server is capable of performing the following three operations:

1) lookup for a specific object in the cache using its URL,

2) lookup for the least recently used object into the cache, and,

3) lookup for a specific client record by his ID.

Before presenting the algorithms run by the caching server and the clients, we define the structure of the request

and response messages. Fig. 3 and Fig. 4 show the structure of the request and the response message, respectively.

URL Cache-
control

HTTP
Header

Figure 3. Structure of request message

fSpace space pIndexdataHTTP
Body

HTTP
Header

Figure 4. Structure of response message

In Fig. 4, fSpace denotes the cache free disk space, space the disk space occupied by the client that issued the

corresponding request, and pIndex is the popularity index of the specific client. All these header fields can be inte-

grated in the response message through the HTTP extension framework [11].

Subsequently, we present the algorithms executed by the caching server. The actions taken by the caching server,

when the replacement algorithm is invoked, are presented in Listing 1.

Function invokeLRU()

// Specify the target free space
targetFreeSpace = LRUFactor*C

do
 // find the least recently used object
 LRU_obj = LRUObjectLookup()
 s = LRU_obj->size
 client_ID = LRU_obj->clientID
 hits_num = LRU_obj->hits
 client = clientLookup(client_ID)
 // update the client’s popularity
 client->popularity -= hits_num*s
 // update the client’s occupied disk space
 client->space -= s

 cacheFreeSpace += s
 remove(LRU_obj)
while (cacheFreeSpace < targetFreeSpace)

endFunction

Listing 1. Replacement algorithm

Upon receipt of a request from a client, the caching server performs the actions described by the pseudo code in

Listing 2.

Event receiveRequest (req)

requestorID = getClientID(req)
url = req->URL
cache_instruction = req->cache_control
requested_obj = cacheLookup(url)
//object found in cache
if (requested_obj != NULL) then
 requested_obj->hits++
 client_ID = requested_obj->clientID
 client = clientLookup(client_ID)
 s = requested_obj->size
 client->popularity += s
else //object not found in cache
 requested_obj = fetchObject(URL)
 // client instructs for caching
 if (cache_instruction == TRUE) then
 requested_obj->clientID = requestorID
 requested_obj->hits = 0
 s = requested_obj->size
 // No adequate free disk space
 if (cacheFreeSpace – s < 0) then
 invokeLRU()
 endif
 cacheObject(requested_obj)
 // store the object into the cache
 client = clientLookup(requestorID)
 client->space += s
 endif
endif

reply->data= requested_obj->data
reply->fSpace = cacheFreeSpace
client = clientLookup(requestorID)
reply->space = client->space
reply->pIndex = client-
>popularity/requestOverlapping
sendReply(requestorID,reply)

endEvent

Listing 2. Request handling at the caching server

6. Simulation Results

We have tried to assess the impact of the proposed game theoretic mechanism on a caching setting involving the

interaction of a number of clients with a single cache server. We have also simulated the non-game theoretic sce-

nario. Our simulation has been trace-driven based of cache logs taken from DEC servers [8]. Table 1 summarizes

the characteristics of the employed traces and the simulated caching subsystem.

Table 1. List of Simulation Parameters
Number of Clients 10,366
Number of Requests 4,431,200
Replacement Algorithm LRU

Cache Size 128MB, 256MB, 512MB, 1GB,
2.5GB, 5GB, 10GB

The metrics recorded throughout the simulation were the following: 1) the observed total cache hit rate (HR), 2)

the hit rate experienced by client i (HRi), 3) the coefficient of variation of the HRis, 4) the number of invocations to

the LRU cache replacement mechanism, and 5) the mean usage of the cache space. The cache hit rate (HR) is calcu-

lated as

Requests ofNumber
Hits ofNumber

=HR

while the hit rate HRi for client i is calculated as follows:

i
iHRi Client of Requests ofNumber

Client of Hits ofNumber
=

We have adopted the coefficient of variation of the HRi measurements as an indicator of the fairness achieved by

the caching scheme. A high value of this fairness criterion (FC) means that different clients do not enjoy the same

benefits from caching and some monopolize the disk space. Conversely, a low FC value implies that the behavior

experienced by the majority of clients is almost identical and all have enjoyed an almost equal hit ratio. Specifically,

the fairness metric is defined as

()∑
=

−
−

=
N

i
i HHR

NH
FC

1

2

1
11 (10)

where H denotes the mean client hit rate and is calculated as follows:

∑
=

=
N

i
iHR

N
H

1

1

0.92

0.94

0.96

0.98

1

1.02

1.04

1.06

128 256 512 1000 2500 5000 10000

Cache Size (MB)

Fa
irn

as
s

C
rit

er
io

n Plain-LRU
GT-LRU

Figure 5. Fairness Criterion

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

128 256 512 1000 2500 5000 10000

Cache Size (MB)

M
ea

n
C

lie
nt

 H
it

R
at

e Plain-LRU

GT-LRU

Figure 6. Mean Client Hit Rate

As shown in Fig. 5, the game theoretic mechanism achieves lower FC values. Moreover, as shown in Fig. 6, the

proposed mechanism yields an increase in the mean client hit rate H with respect to the plain-LRU scheme. Such

increase may be attributed to the fact that, in the game theoretic case, “highly aggressive” clients, who are typically

few, cease caching, according to the proposed mechanism, thus, do not monopolize the cache disk space. As a con-

sequence, “less aggressive” clients, who are the majority, take benefit of the available disk space and achieve an

increased hit rate. However, as anticipated, the overall cache hit rate (HR) is decreased, as shown in Fig. 7.

0

0.1
0.2

0.3
0.4

0.5
0.6

0.7

128 256 512 1000 2500 5000 10000

Cache Size (MB)

C
ac

he
 H

it
R

at
e

Plain-LRU

GT-LRU

Figure 7. Cache hit rate

The proposed mechanism managed to drastically reduce the number of LRU invocations in the cache, as shown

in Fig. 8. Specifically, the number of replacements in the game theoretic scenario was significantly reduced with

respect to the unregulated case, especially for small cache sizes. In every invocation, the replacement scheme re-

moved the least recently used items of the cache to free the 20% of the allocated disk space.

We have also quantified how the mean cache disk space use (a time average) is influenced by the application of

the game theoretic scheme. Fig. 9 shows the relevant findings. In general, the level of mean cache disk space use is

lower in the game theoretic case, than in the unregulated scenario. This is anticipated, since clients do not cache

objects deliberately and the cache disk is filled at a slower rate.

0

200

400

600

800

1000

1200

128 256 512 1000 2500 5000 10000

Cache Size (MB)

of

 L
R

U
 In

vo
ca

tio
ns

Plain-LRU

GT-LRU

Figure 8. Number of LRU invocations

0

20

40

60

80

100

128 256 512 1000 2500 5000 10000

Cache Size (MB)

C
ac

he
 S

pa
ce

 U
se

d
(%

) Plain-LRU
GT-LRU

Figure 9. Mean Cache Disk Space Use

7. Prior Related Work

We are aware of only a few very recent works on game-theoretic aspects of web content caching and replication.

The most relevant to our work is the one in [13], where the contention between different clients that compete for the

storage capacity of a single cache server has been studied, and modeled as a non-cooperative game. However, this

work did not provide an analytical model of the proposed framework, and the simulations were based on synthetic

traces. Other, less relevant, works deal with distributed selfish replication (DSR). DSR is defined as the replication

of resources by server nodes that act selfishly. This problem has been studied as a non-cooperative game in [16].

More recently, in [14], equilibrium object placement strategies were derived for the DSR problem, and two distrib-

uted algorithms have been proposed. Another related work on market-based resource allocation in content delivery

networks is reported in [15]. The focus in [15] is on a three-part market game between content providers, distribu-

tors, and consumers.

8. Conclusions and Future Work

In the context of Web caching, clients typically reserve more disk space in order to improve their cache perform-

ance (hit rate). As the cache disk space constitutes a finite resource, a social interaction problem is formulated. In

this paper, we have formulated the problem as a non-cooperative game, and the existence of a NE has been investi-

gated. Clients compete with each other trying to selfishly maximize their utility function until the NE is reached. We

propose a utility function consisting of profit and cost components. Clients have to determine a rational course of

interaction taking into account the performance advantages and associated resource retrieval and storage costs. The

cost component is dependent upon the strategies that different clients assume. An extensive simulation of the game

theoretic mechanism has been performed. Our findings indicate noteworthy improvement in the adopted fairness

criterion metric. The performance seen by different clients is comparable and more predictable compared to the un-

regulated setting. At the game theoretic scenario, the number of cache replacement operations is drastically reduced

and the mean client hit rate is higher, however, the overall cache hit rate is marginally degraded. Our future work in

this area includes the assessment of the impact of similar game theoretic schemes in cooperative caching (e.g., in

caching hierarchies) as well as web content pre-fetching.

9. Acknowledgements

The first author would like to thank the Alexander S. Onassis Public Benefit foundation for its financial support.

10. References

[1] B. M. Duska, D. Marwood and M. J. Feeley, “The Measured Access Characteristics of WWW Client Proxy Caches”, Proc.

USENIX Symposium on Internet Technologies and Systems, December 1997.

[2] A. Bovopoulos and A. Lazar, “Decentralized algorithms for optimal flow control”, Proc. Allerton Conference on Communi-

cations, Control, and Computing, 1987, pp. 979-988.

[3] D. Fudenberg and J. Tirole, “Game Theory”, MIT Press, Cambridge (MA), 1991

[4] J. B. Rosen, “Existence and Uniqueness of Equilibrium Points for Concave N-Person Games”, Econometrica, Vol.33, No.3,

1965.

[5] S. H. Rhee and T. Konstantopoulos, “A Decentralized Model for Virtual Path Capacity Allocation”, Proc. INFOCOM 1999.

[6] D. P. Bertsekas and J. N. Tsitsiklis, “Parallel and Distributed Computation: Numerical Methods”, Athena Scientific, Bel-

mont, MA, 1997.

[7] A. Lazar, A. Orda and D. Pendarakis, “Virtual Path Bandwidth Allocation in Multiuser Networks”, IEEE/ACM Transac-

tions on Networking, Volume 5, Issue 6, December 1997, pp. 861 – 871

[8] Digital Equipment Corporation, Digital’s Web Proxy Traces. ftp://ftp.digital.com/pub/DEC/traces, August–September 1996.

[9] M. Rabinovich and O. Spatscheck, “Web caching and replication”, Addison Wesley, 2002.

[10] C. Roadknight and I. Marshall, “Variations in cache behavior”, Proc. 7th International WWW Conference (WWW7), Bris-

bane, Australia, April 1998.

[11] H. Nielsen, P. Leach and S. Lawrence, “An HTTP Extension Framework”, IETF Network Working Group, RFC 2774, Feb-

ruary 2000.

[12] P. Konstanty and M. Koziρski, “Web Cache charging policies”, position paper in NLANR Web Caching Workshop, Boul-

der, USA, 1997.

[13] S. Hadjiefthymiades, Y. Georgiadis and L. Merakos, “A Game Theoretic Approach to Web Caching”, Proc. 3rd International

IFIP-TC6 Networking Conference, Athens, Greece, 2004.

[14] N. Laoutaris, O. Telelis, V. Zissimopoulos and I. Stavrakakis, “Distributed Selfish Replication”, accepted in IEEE Transac-

tions on Parallel and Distributed Systems, 2005.

[15] Ö. Erçetin and L. Tassiulas, “Market-Based Resource Allocation for Content Delivery in the Internet”, IEEE Transactions

on Computers 52(12), pp. 1573-1585, 2003.

[16] B. Chun, K. Chaudhuri, H. Wee, M. Barreno, C. Papadimitriou and J. Kubiatowicz, “Selfish caching in distributed systems:

a game-theoretic analysis”, Proc. 23rd Annual ACM Symposium on Principles of Distributed Computing, Canada, 2004.

