
Adaptive Partial CDN Replication

Manos Spanoudakis
 Dept. of Informatics & Telecommunications,

University of Athens
e.spanoudakis@di.uoa.gr

Stathes P. Hadjiefthymiades
 Dept. of Informatics & Telecommunications,

University of Athens
shadj@di.uoa.gr

Abstract

Content Distribution Networks are a very important
part of today's Internet and the Web. They enable the
scalable provision of content and yield significant
saving for the information provides (the clients of the
CDN). In this paper we propose a scheme that tries to
optimize the use of disk space in the CDN. The basic
idea involves the partial replication of the contents of
a web site. Site objects are transferred to the CDN in
bundles. The site partitioning technique that produces
bundles can be based on the site structure or the
popularity of the site contents. We propose two
schemes for site partitioning: the static partitioning
and a technique based on Markov graphs (mostly
intended for Web prefetching). We simulated the
discussed schemes using extensive traces taken from
the site of our department. Our findings are very
promising for the proposed schemes.

 1. Introduction

Content distribution networks (CDN) are becoming
more and more important nowadays due to the
impressive growth of the WWW and associated
technologies. The need to efficiently push information
close to the interested clients through a ubiquitous
infrastructure is dictated by the ever increasing supply
of information, the introduction of new Internet sites
and the need of high specialization in today’s corporate
environments.

A CDN supports content providers on the highly
important issue of scalable content delivery and
delivers their content to any interested client [3],[4].
CDN adoption yields two important benefits to content
providers. As discussed above, CDN presence is global
(ubiquitous). Typically, CDN companies deploy nodes
around the globe with computing and networking
capabilities that are relatively difficult to saturate. The
collaboration between content providers and content

distributors allows the former to secure global presence
with fairly reduced costs. Moreover, the CDN adoption
protects the infrastructure of the content provider from
unforeseen situations like the sudden peaks in the
experienced load (flash events).

The CDN commits different types of resources to
the content provision task. Resources like disk space,
computing capacity and network bandwidth are
devoted to the CDN clients (i.e. the content providers).
An increased clientele of the CDN would imply
increased probability for the saturation of the
aforementioned resources. In this paper we focus on
disk capacity as we believe that this resource type can
be easily exhausted in contrast to the other types. Web
content is growing in exponential terms i.e the size of
the average web page has more than tripled [6] (grew
from 93.7K to over 312K). Furthermore, the wide
adoption of new multimedia formats like High
Definition video, is expected to add more load on disk
utilization and the inclusion of the CDN in the
information delivery chain implies that the induced
load is shifted to the CDN infrastructure.

As discussed above, our proposed solution tries to
mitigate the disk space saturation risk. We try to
rationalize the commitment of disk space to the
different CDN clients. We focus on the solution of
partial content replication i.e., not all the content
available on the content provider is pushed to the
CDN. Only certain segments of the sites are made
available through the CDN. Their selection is based on
different characteristics of the site like the structure
(dependencies between objects) or usage monitoring
(popularity). We capitalize on such information to
reduce the volume committed to a certain provider in
the CDN and, thus, increase the CDN capacity. Our
solution implies the risk of missing a requested object
from the replicated set found at the CDN. In this
scenario, the user’s request is passed on to the original
site and served there. Hence, the interested user incurs
a limited increase in the average retrieval latency. We

try to quantify the pros and cons stemming from our
architecture through a series of simulations, using the
various algorithms proposed.

This paper is structured as follows. Section 2
presents the proposed architecture. Section 3 is devoted
to the site segmentation/partitioning algorithms
adopted for the formulation of WWW bundles.
Bundles are transferred to the CDN to cater for user
requests. Section 4 presents our simulation findings.
Finally, Section 5 closes the paper by presenting our
conclusions.

 2. System Architecture

The proposed system architecture extends the
classic CDN architecture to facilitate the partial
replication of the site to the surrogates. As already
discussed the proposed system aims to replicate a part
of the CDN at the surrogates. This partial replication is
performed by partitioning the site graph into subgraphs
and replicating some of these subgraphs at the
surrogates. A specific algorithm, according to the
desired criteria, determines the selection of the
subgraphs that are replicated. More details on the
adopted algorithms are provided below.

One of the key tasks of the system is to partition the
site in an effective way so as to achieve an increased
hit rate, while occupying as less space as possible. To
achieve this, a number of functionalities must be
implemented, such as the “partitioning” and the
“replacement” of the fragments on the surrogates.
Furthermore, a number of messages should be
exchanged between the CDN Server and the surrogates
(the actual replication servers). The system architecture
is depicted in Figure 1.

Figure 1: System Architecture

As depicted in Figure 1, the CDN server sends a
message which contains the subgraphs (bundleSet) that
should be replicated on each surrogate. It must be
noted that a bundle is not a structure containing the
actual objects, but a logical entity, i.e. a set of
references to the objects it includes. The body of the
message may only describe the actual objects to be
replicated, or even contain these objects. In the first
case, it is the surrogate's responsibility to retrieve these
objects from the origin server. Such messages may be
sent periodically, or only at system start-up, according
to the partitioning algorithm that is used.

Another type of messages (request Logs in Figure
1) that is exchanged between the surrogates and the
CDN server may be used, in some cases. Depending on
the adopted algorithm data regarding the requests of
users may be exploited in order to perform the
partitioning. In this case, each surrogate sends a log file
indicating the user requests that the surrogate was
asked to serve. The CDN server then, executes the
partitioning algorithm using the data from these logs in
conjunction with previously processed data, re-
partitions the site graph and sends a message to the
surrogates containing the updated bundles set. As
already mentioned, the surrogates may then need to
perform a number of requests to the origin site to
retrieve objects that are not already hosted.

As stated above, the proposed schema, aims to
achieve a high hit ratio, while occupying as less disk
space as possible on the surrogate. A request from a
user is characterized as a hit when it the surrogate can
serve it locally, i.e. the requested object is available
within the bundles found in the surrogate. In case the
surrogate fails to serve a request locally, it should
contact the origin site and fetch the resource. In this
case there is a small time overhead incurred by the user
but this scenario occurs with very limited probability.

 3. Site Partitioning Algorithms

The partitioning algorithms used to create the CDN
bundles, can be distinguished in two categories
according to the criteria used to perform the
partitioning. The first set includes these algorithms that
perform the partitioning based on the site structure,
using metrics such as the interconnectivity of web
pages, their “distance” (the number of hyperlinks the
user needs to follow in order to go from one page to
the other), etc. Such metrics are static, and therefore,
not affected by any other parameter but the structure of
the site.

On the other hand algorithms, belonging to the
second set use dynamic data to derive metric values.
Such a dynamic algorithm relies on analysis of web

traces in order to determine the relativity (the
possibility to navigate from one page to the other based
on the user behavior within the site) of objects based
on visitor statistics. In our implementation, we have
included two algorithms one from each category:

“Static Site Analysis” (SSA) as a representative of
the static algorithms category, and, “Markov Site
Analysis”, as a representative of the dynamic schemes.

The details of the aforementioned algorithms are
discussed below.

 3.1. Static Site Analysis

The concept of the algorithm is to isolate “central”
nodes (objects) of the web site and use each one of
them as the base point of a bundle. Each node is used
as a starting point to perform a breadth first walk in the
graph. Every node visited is added to the specific
bundle, until it is filled up, or there are no remaining
nodes to visit. The main steps of the algorithm are
shown in Figure 2 and discussed in the following
paragraphs.

SiteGraphGenerator(“www.di.uoa.gr”)
SiteGraph=SiteGraphHandler.readGraphXML(“XML
_GraphFile”)
SortedVerticesList
=SiteGraph.sortVerticesDegree()
Bundles=SiteGraph.generateBundles(SortedVelt
icesList)

Figure 2: Main Steps of the Static Site Analysis

As shown above the algorithm is divided in four
main steps. The first step (method
SiteGraphGenerator()), utilizes a web spider object to
analyze the target web site and produce an XML
representation of the site graph. The web spider used
was based on the WebSPHINX library [1], which was
adopted to meet the specific requirements of the test
case. In more details, the aforementioned method,
visits every resource (URL) of the site, and produces
an XML file representing the structure of the site as a
directed graph i.e. a set of vertices and a set of directed
edges. A part of the resulting XML file is shown in
Figure 3.

<?xml version="1.0" encoding="UTF-8" ?>
<SiteMap SiteUrl="http://www.di.uoa.gr">
 <VerticesList>
<Vertex url="http://www.di.uoa.gr" size="2260" />
<Vertex url=http://www.di.uoa.gr/images/menu-uoa.gif
size="9488" />
<Vertex url="http://www.di.uoa.gr/gr/" size="5562" />
 . . .
 </VerticesList>

 <EdgesList>
<DirectedEdge source="http://www.di.uoa.gr"
target="http://www.di.uoa.gr/images/menu-uoa.gif" />

<DirectedEdge source="http://www.di.uoa.gr"
target="http://www.di.uoa.gr/index-items/di-
grlft.jpg" />
<DirectedEdge source="http://www.di.uoa.gr"
target="http://www.di.uoa.gr/gr/" />

 <DirectedEdge source="http://www.di.uoa.gr"
target="http://www.di.uoa.gr/index-items/choffgr.jpg"
/>
 . . .
 </EdgesList>
</SiteMap>

Figure 3: XML representation of site structure

The next step is to read the resulting XML file and
generate a graph object, which will be used to create
the bundles. This functionality is implemented in the
“SiteGraphHandler.readGraphXML()” method.

The produced graph object needs to be further
processed before the final generation of bundles. As
already mentioned the algorithm isolates the most
“central” nodes of the graph and generates clusters-
subgraphs, starting with these ones. The centrality
metric is calculated in this step, as the number of
outgoing links from each graph node. Furthermore, all
nodes are sorted based on their centrality, in
descending order. This functionality is implemented in
the method
“SiteGraph.sortVerticesDegree()” which is presented
in more details in Figure 4.

sortVerticesDegree()
{
/* Sorts the Vertices of a graph based on the
number of outgoing links from a node in descending
order. */

For each Node
 Degree=Node.outDegree
 NodesArray.add(Node,degree)
End for
NodesArray.sortDescending
}

bundlesArray[] generateBundles()
{
 i=0
 while i< NodesArray.size()
 {
 rootNode=NodesArray(i)
 currentBundleSize=0
 bundle = new Bundle
 nextNode=rootNode.breadthFirstIterator.Next()
 while ((nextNode != Null)
 and
 (nextNode.size+ currentBundleSize <
 maxBundleSize)
)
 {
 bundle.add(nextNode)
 currentBundleSize += nextNode.size
 }
 }
}

Figure 4: Bundle generation process

Finally, the last step of the algorithm is to generate
the bundles resulting from the Static Site Algorithm.
The sorted graph nodes processed in the previous step

http://www.di.uoa.gr/images/menu-uoa.gif
file:///p://www.di.uoa.gr/
file:///p://www.di.uoa.gr/
file:///p://www.di.uoa.gr/
file:///p://www.di.uoa.gr/
file:///p://www.di.uoa.gr/
file:///p://www.di.uoa.gr/

are used to generate the bundles. Starting with the most
“central” ones each node is used as a root node to
perform a breadth first walk in the graph. All nodes
visited during a walk are added to the same bundle
until it is filled up or there are no more nodes to visit.
The method terminates, when a specified number of
bundles (passed as a parameter) are filled in. Method
“generateBundles” (pseudocode also in Figure 4)
performs the appropriate processing in the sorted nodes
produced in the previous step, and generates an Array
object containing the outgoing bundles (i.e., the
bundles to be sent to the surrogate).

It must be noted that due to the structure of a web
site graph, there are circles, and therefore a breadth
first iteration starting from a different node each time,
may visit nodes that have been visited in previous
iterations (that have been initiated with different root
node). The implemented algorithm takes special care to
avoid the duplication of nodes in distinct bundles.

 3.2. Markov Traffic Analysis

In contrast to the previous algorithm, which is based
on the static structure of a web site, the second
algorithm we examine is a dynamic one. In more
details, the Markov Traffic Analysis algorithm
generates a Markov graph based on past user requests.
It is characterized as a dynamic algorithm, since the
graph used for partitioning of the web site is regularly
updated with new users’ request data at runtime.
Therefore this algorithm is adaptive to live user
interaction, allowing users’ “trends” to affect the
partitioning scheme and the respective generation of
bundles.

The implemented algorithm utilizes a Markov
dependency graph, which is constructed as described
by Padmanabhan and Mogul in [2]. The weighted
graph is constructed in order to depict users’ access
patterns, and it is used to partition the designated site
into clusters-bundles that have “proven” to be widely
visited paths. In other words, the algorithm attempts to
isolate nodes that are regularly visited “sequentially”
by users. The dependency graph is updated as new
requests arrive, and in regular intervals the site is
repartitioned in bundles that reflect the latest user
trends in movements within this site.

As shown in Figure 5, the partitioning algorithm is
executed in two phases. It must be noted that the two
phases can be executed asynchronously, meaning that
phase 1 may continue to execute in parallel with phase
2, and does not have to halt until the later completes. In
Phase 1 (MarkovGraphHanlder.addRequest()), all the
logged requests are stored in an array.

While true(){
 MarkovGraphHanlder.updateGraph()
 If (interval) then{
 SortedVertListMarkovGraphHanlder.
 sortVerticesWeight()
 Bundles= MarkovGraphGenerator.
 generateBundles(SortedVertList)
 }
}

Figure 5: Partitioning Algorithm

In regular intervals (algorithm parameter), the
second phase of the algorithm is triggered. This phase
involves the update of the Markov graph, with new
user requests’ data, the sorting of the graph based on a
specific metric and finally the bundle generation. In
more details, the update of the Markov graph (method
“MarkovGraphHanlder.updateGraph()”) is performed
as follows. All data regarding user requests saved in
the array in phase1, are used to identify all vertices of
the graph that are “affected” i.e. are included in the
array. For every vertex in the array, all outgoing edges’
weights are updated accordingly. Subsequently
(method “MarkovGraphHanlder.sortVerticesWeight()”
in Figure 6) the graph is sorted on descending order
based on a metric, which is assigned to every node of
the graph. This metric, labeled D, is calculated as
follows:

D= ∑
N

weightedge
1

.

where edge.weight in the above equation is the
weight of each outgoing edge, as calculated by the
aforementioned method “updateGraph()”. Finally
method
“MarkovGraphGenerator.generateBundles(SortedVert
List)” is invoked to generate the bundles that will be
used to replicate the site. The bundles are then replaced
accordingly to the surrogates.

While true(){
 MarkovGraphHanlder.addRequest()
 If (requests=interval) then {
 MarkovGraphHanlder.updateGraph()
 SortedVertList= MarkovGraphHanlder.
 sortVerticesWeight()
 Bundles= MarkovGraphGenerator.
 generateBundles(SortedVertList)
 Requests=0
 }
 requests = requests + 1
}

Figure 6: Monitoring and Graph Generation
algorithms

It must be noted that this algorithm requires a
warm-up period, during which all incoming requests
are handled as “misses” to the “request analyzer”
object in order to initialize the graph and perform the
initial partitioning of the site. It must be noted that

during this period there is no replication of the site at
the surrogates. However, this can be avoided if
previous request data collected prior to system
installation are collected and analyzed, and, thus, used
to perform the initial partitioning of the system.

 4. Simulation Results

In order to assess the performance of the proposed
schemes we have undertaken a series of simulations.
Our simulations involved the replication of an
extensive web site (the site of our department). We
assumed that the site content was partitioned according
to the algorithms presented in previous sections and
monitored the behavior of the replication scheme. We
have tried to benchmark the proposed algorithms
through an extensive, real web access log taken from
the same site (captured in 3 months period). We have
evaluated different levels of partial replication
(percentage ranging from 48% to 72%). The bundle
size was either 5 or 10 MB. The total volume of the
web site was 250 MB.

We monitored the performance of the CDN w.r.t.
the object hit rate (OH) achieved in light of the partial
replication. Apart from the object hit rate, we also
monitored the byte hit rate (BH), another popular
metric for caching systems. We use the metrics OG
(Object-level Gain) and BG (Byte-level Gain) defined
as follows:

rp
BHBG

rp
OHOG ==

In the above metrics, rp denotes the replication
level. Higher gain values (OG/BG) are desirable
indicating that an increase in the hit rates and decrease
in the rp. Evidently this means that the proposed
scheme has achieved better hit rates using less disk
space. Hence, when any of the above metrics increases
so does the efficiency of the considered schemes .
From Figure 7 and Figure 8 we can deduce that both
schemes accept quite similar results in terms of the
OG. The static partitioning scheme outperforms the
Markov solution w.r.t. the BG. In Figure 9 and Figure
10 we plot the hit rate (object/byte) accomplished by
the two schemes. We observe that the Markov
partitioning performs similarly to the Static
partitioning w.r.t. the OH. In all schemes, the OH
approaches the 90%. In the Markov partitioning
scheme, the BG remains almost stable at 50%. BG is
considerably higher in the Static Partitioning case,
indicating a preference of the algorithm to smaller
sizes which are easily accommodated in the produced
bundles.

Markov Partitioning

0,00

0,20

0,40

0,60

0,80

1,00

1,20

1,40

1,60

1,80

2,00

72-5 72-10 64-5 64-10 56-5 56-10 48-5 48-10

Replication Percentage - Bundle Size

Ga
in OG

BG

Figure 7: Object/Byte Gain for the Markov
Partitioning

Static Partitioning

0,00

0,20

0,40

0,60

0,80

1,00

1,20

1,40

1,60

1,80

2,00

72-5 72-10 64-5 64-10 56-5 56-10 48-5 48-10

Replication Percentage - Bundle Size

Ga
in OG

BG

Figure 8: Object/Byte Gain for Static Partitioning

Markov Partitioning

0,00

10,00

20,00

30,00

40,00

50,00

60,00

70,00

80,00

90,00

100,00

72-5 72-10 64-5 64-10 56-5 56-10 48-5 48-10

Replication percentage - Bundle Size

Hi
t r

at
e OH

BH

Figure 9: Object/Byte Hit Rate for Markov
Partitioning

Static Partitioning

74,00

76,00

78,00

80,00

82,00

84,00

86,00

88,00

90,00

72-5 72-10 64-5 64-10 56-5 56-10 48-5 48-10

Replication Percentage - Bundle Size

Hi
t R

at
e OH

BH

Figure 10: Object/Byte Hit Rate for Static
Partitioning

 5. Conclusions

In this paper we studied the partial content
replication in CDNs. We presented an architecture
which aims at optimizing the disk space while trying to
minimize the miss ratio. In our implementation two
algorithms were adopted, with different characteristics.

The static algorithm is based on the structure of the
web site, and the dynamic algorithm which tries to
adapt to the user behavior experienced within the web
site. Following the implementation of the algorithms
we performed a series of simulations with extensive
access traces.

Our results were very promising for all the involved
parties. Currently we are working on more algorithms,
one based on the structure of the web site and an
adaptive one.

 6. References

[1] A Personal, Customizable Web Crawler
http://www.cs.cmu.edu/~rcm/websphinx/
[2] V. Padmanabhan, and J. Mogul, “Using predictive
prefetching to improve World-Wide Web latency”. In
Proceedings of the ACM SIGCOMM Conference, 1996.
[3] M. Rabinovich and O. Spatscheck, “Web Caching and
Replication”, Addison Wesley, 2001.
[4] Markus Hofmann and Leland Beaumont, “Content
Networking Architecture, Protocols, and Practice” Elsevier,
2005.
[5] Scot Hull, “Content Delivery Networks: Web Switching
for Security, Availability, and Speed”, McGraw Hill, 2002.
[6] Andrew King, “Website Optimization”, O'Reilly Media,
2008

	 1. Introduction
	 2. System Architecture
	 3. Site Partitioning Algorithms
	 3.1. Static Site Analysis
	 3.2. Markov Traffic Analysis

	 4. Simulation Results
	 5. Conclusions
	 6. References

