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Abstract 
 

Context-aware applications sense, combine and 
reason about contextual information in order to 
determine and adapt to the current user’s context. A 
very important problem associated with context is the 
inherent ambiguity and inaccuracy. Contextual 
information is typically pervaded with imperfect sensing 
(e.g., noise of sensor readings). A novel context fusion 
model that represents, determines and reasons about 
context based on the reliability on sensor readings is 
proposed. This model adopts Dynamic Bayesian 
Networks and Fuzzy-Set theory in order to deal with the 
reliability of contextual data at the context inference 
phase.  
 

1. Introduction 
Context-aware applications require support for 

managing imprecise context. In such applications, 
contextual information is captured from numerous 
sensors. Therefore, the context estimation is 
characterized by imprecise knowledge, e.g. missing 
information and unreliability on sensor readings. The 
method of deriving high-level understanding of context 
(e.g., user situation) from low-level, inaccurate 
contextual data is called context fusion. 

Approximate context reasoning produces knowledge 
about the user’s context. However, different kinds of 
imperfection (e.g., uncertainty, sources reliability, 
missing information) can be handled through the 
framework of the Fuzzy Logic (FL) [1]. FL is based on 
specific degrees of uncertainty and vagueness for 
representing and inferring context. 

In this paper, we move beyond a simple data fusion 
operation. We propose a probabilistic context fusion, 
which takes into consideration the reliability of sources. 
The major contribution of the paper is the combination 

of the context fusion results with the estimated reliability 
on the sensed contextual data. Probabilistic context 
fusion is based not only on the joint probability over 
sensor data but, also, on the reliability of sources 
deployed on the environment. This means that, during 
the fusion process, a degree of confidence over the 
sensed / retrieved context is taken into account enabling 
more accurately context inference (e.g. inference of the 
current user location).  

The paper is organized as follows: Section 2 defines 
the terms context, reliability and confidence, while 
Section 3 discusses the probabilistic context fusion 
based on Dynamic Bayesian Networks (DBN). In 
Section 4, the reliability of sources represented through 
FL is incorporated in the fusion process, and in Section 
5, the proposed mechanism is evaluated with real 
contextual data. Section 6 discusses related work and, 
finally, Section 7 concludes the paper.  
 
2. Context Representation 
2.1. Context Definition 

In order to render context-aware applications capable 
of sensing, combining and inferring imprecise context, a 
context model has to be adopted. Such model represents 
imprecise context by using various degrees of 
vagueness. Therefore, a well-known definition of 
context in [2] is that: context is any information that can 
be used to characterize the situation of an entity. An 
entity is a person, place or object that is considered 
relevant to the integration between a user and an 
application, including the user and the application 
themselves. Our approach in context modeling is 
illustrated by the following definitions of contextual 
attribute, situational context and reliability of sources. 
Further reading about context models can be found in 
the review in [3]. 
Definition 1: Let the finite set P(n) = {p1(n), …, pN(n)} 
of contextual attributes pi(n), i = 1, …, N of detail level 
n, n ≥ 0. Such attributes constitute the current context of 
n-level (e.g., motion, lightness). The set of attributes 
belonging to P(0) (0-level) represents ground context, 
i.e., context that cannot be inferred by attributes 
belonging to P(0) (e.g., sensor readings). The value / 
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instance of contextual attribute of n-level refers to a set 
of contextual instances v ∈ Dom(pi(n)).  
Definition 2: Situational context is defined as the n-
level context with n > 0. The situational context p(n) ∈ 
P(n), n ≥ 1 derives from a logical synthesis of K 
attributes pi(ki) ∈ P(ki), i = 1, …, K, ki < n. p(n) is 
represented by the K-ary relation from a subset of the 
Cartesian product P1(k1) × … × PK(kK) of K sets of 
attributes, where ki is the level of the ith set. If such 
relation is a logical and-aggregation (∧) of attributes 
then situational context is the implication (→) of 
conjunctive attributes that hold true at a specific time, 
i.e., ∧i(pi(ki)), i = 1, …, K. The K-ary relation can be 
represented as the antecedent-part of the context 
inference rule in (1) and the inferred p(n) as the 
consequent-part. pi(ki) may be read as “pi(ki) is vi” or 
simply “pi is vi”, where vi ∈ Dom(pi(ki)). p(n) is 
concluded by a higher level set with n  = max{ki} + 1, i 
= 1, …, K. 

(p1(k1) is v1) ∧ … ∧ (pK(kK) is vK) → (p(n) is vn) (1) 

The Fuzzy-Set theory in [1] is defined as an extension 
of the set theory. Non-fuzzy sets only allow full 
membership or no membership at all, where fuzzy sets 
allow partial membership. In other words, a fuzzy set A 
is defined over a subset of a universe of discourse U 
through a membership function µA: U → [0, 1]. An 
element v ∈ U belongs to A to a certain degree µA(v). 
The higher a value of µA(v) the higher degree of 
membership of v to A. A is represented as A = {µA(v1) / 
v1 + …+ µA(vn) / vn} if U is measurable, vi ∈ U, i = 1, …, 
n. A contextual instance may be un-quantifiable due to 
its nature and can be represented by a fuzzy set. Hence, 
if v* ∈ Dom(p) be a sensed value (observation) for the v 
term related to p attribute then, the degree of fulfillment 
(∈ [0,1]) of the “p is v” proposition is defined as Pos(p 
is v | v*), i.e., the possibility of “p is v” given the 
observation v* and equates to Pos(p is v | v*) = 
maxu(min(v(u),v*(u))), u ∈ Dom(p). Moreover, 
granularity d(p(n)) of the n-level p(n) is defined as the 
number of attributes that determine p(n). Hence, d(p(n)) 
= K, if p(n) is the consequent of the rule in (1) with K 
antecedents. By definition, d(p(n)) ≥ d(p(m)) ⇔ n ≥ m. 
Granularity denotes the detail level of a context, i.e., the 
higher the granularity is, the more information the 
situational context conveys.  
Example: Consider the situational context p = user is 
attending to a conference of level n = 2. p can be a 
synthesis of q = user is located in a conference room (n 
= 0) and φ = user is presenting a report in the 
conference room (n = 1); q is a ground context while φ 
can be inferred by the attributes: user location, 
environmental illumination and noise, a galvanometer 
for sensing touch, a three-axis accelerometer and the 

projector activity. Hence, the context inference rule for p 
could be φ ∧ q→ p, or specifically, user is located in a 
conference room ∧ user is not alone ∧ user is standing 
still ∧ environmental illumination is dark ∧ 
environmental noise is low ∧ projector is active → 
situational context is attendance to a conference. 
 
2.2. Reliability of Sources 

Sensors are often inaccurate and it is important to 
incorporate accuracy estimation in (1). Knowledge about 
sensors accuracy can be obtained by various means, e.g., 
manufacturer’s specifications, operating time, 
confidence / reliability calculation techniques. In order 
to estimate how confident we are on sensing a contextual 
instance, we define the source reliability, h, of a source. 
This quantity associates a degree of reliability to each of 
the Si sources in S = {S1, …, SL}, i = 1, …, L, defined in 
(2). A value of 0 denotes that, the sensor readings are 
not considered reliable, while a value of 1 denotes the 
opposite. It is worth noting that, the reliability of each 
source is not necessarily fixed, but it may change over 
time, e.g., the sensor measurement accuracy may vary in 
different weather conditions.  

h: S → [0, 1] (2) 
 
2.3. Confidence of Sources 

Consider the instance vi of the pi attribute that 
corresponds to the source Si ∈ S, i = 1, …, L. Then, the 
degree of confidence, conf for the instances that infer the 
n-level situational context p = p(n) is calculated in (3). 
Then conf is the maximum value of the minimum h(Si,Sj) 
of each pair Si, Sj of sources. For instance, for S = {S1, 
S2, S3} with reliability values (0.2, 0.4, 0.8), respectively, 
the confidence value is conf = max{min(0.2,0.4), 
min(0.2,0.8), min(0.4, 0.8)} = 0.4. We do not choose 
conf to be min{h(Si)}, i=1, …, L since such decision is 
rather restrictive because when the reliability of a source 
at a n-level has the minimum value of those of all 
sources of m level with m > n then, the entire confidence 
depends only on this source. The rule in (1), which 
concludes the n-level situational context p, takes into 
consideration the reliability of the sources, as defined in 
(4). The proposition “p1 is conf1” in (4) denotes the 
confidence on the observation or conclusion of the 
instance vi of pi. If pi ∈ P(0) then, confi is the reliability 
hi of the source pi. The confidence conf on the value v of 
p is calculated by (3) given that the confidence values 
confi, i = 1, …, L, of the pi antecedents of p have been 
calculated. The most probable situational context p along 
with the corresponding degree of confidence conf 
concluded by (4), refers to the context fusion result. The 
proposed model aims at evaluating how such conclusion 
holds true with respect to the degree of reliability on 
sensor readings, as discussed later.       
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[(p1 is v1) ∧ (p1 is conf1)] ∧ ... ∧  
[(pk is vk) ∧ (pk is confk)]→ [(p is v) ∧ (p is conf)]     

(4) 

 
3. Probabilistic Context Fusion 

We adopt the probabilistic fusion from [4], which is 
based on Dynamic Bayesian Networks (DBN) [5]. A 
DBN extends the static Bayesian Network (BN) by 
modeling changes of random variables over time. 
Random variables in a DBN are affected by variables 
from previous time slots. The random variables of the 
DBN are (i) ground contextual attributes p(0) ∈ P(0) 
(i.e., sensor readings) and, (ii) situational context p(k) ∈ 
P(k) with k ≥ 1. p(k) at time t can affect (i) a situational 
context p(m) with m < k and (ii) an attribute p(0) at the 
same time t (see Figure 1). For each sensor Si ∈ S (or 
pi(0)), i = 0,…, L, we estimate the probability 
distribution Prob(pi(0) is ui | pj(k) is vj), pj(k) ∈ P(k), k ≥ 
1. Moreover, for every situational context without parent 
nodes, we determine the probability distribution 
Prob(pi(k) is ui | pj(m) is vj), i = 1,…,d(pj(m)), with pi(k) 
∈ P(k), pj(k) ∈ P(m), k ≥ 1 and m > k. 
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Figure. 1. A DBN represents the dependencies between random 
variables (situations / attributes) at different time slots. 

3.1. Fusion Operator 
The calculation of the conditional probability Prob of 

pieces of situational context determines accurately the 
value of the situational context at time t, i.e., p = p(t), p 
∈ P(k), defined in (5), where pi ∈ P(i) with i = 0,..k-1. 
Equation (5) is the mathematical representation of the 
probabilistic fusion. It denotes the probability p having a 
value v(t) at time t given the value v(t-1) of p at time t -1 
and the values vi(t) of its dependable attributes at time t 
of lower levels. The probabilistic fusion result refers to 
the p(t) that maximizes the joint probability, defined in 
(6). Nk in (6) is the number of pieces of situational 
context of k-level. Hence, Prob(p(t)) is the probability 
value of the occurrence of p(t) situational context and we 
call such inference probabilistic context fusion. 
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4. Reliability-based Probabilistic Context 
Fusion 

Let p = p(t) derive from the probabilistic fusion in (6). 
The probabilistic fusion determines p regardless of the 
reliability / confidence of the contributing sources. 
However, Prob(p(t)) = Prob(p) at time t has to be 
estimated with a certain degree of confidence on sensor 
readings. Consider the fact that the fusion in (6) results 
to a high value of probability Prob(p) but with a low 
confidence confp on the sources. This could lead to a 
non-valid determination on the occurrence of p. Hence, 
Prob(p) probability has to be re-evaluated taking into 
account the reliability on sensor readings. Such 
reasoning can be dealt with imprecise inference by 
characterizing the values of Prob(p) and confp with fuzzy 
sets (either type-1 or type-2 fuzzy sets). For that reason, 
the proposed model combines Prob(p) and confp in an 
approximate reasoning manner through fuzzy inference 
rules. The rule for inferring the k-level context is written 
in the modus ponens rule form illustrated in Figure 2. 
The observations v*

i, i = 1, …, N, are combined with the 
corresponding values of confidence confi. The concluded 
value v* for p relates to the possibility of occurrence 
Pos(p) (confidence probability) of p taking into account 
the joint probability Prob(p) and the confidence value of 
each antecedent confi , i = 1, …, N. confi relates to fuzzy 
sets that describes the confidence on the vi instance of pi. 
The proposed inference in Figure 2 uses only one fuzzy 
controller at the highest level of conclusion. Specifically, 
the fuzzy fusion operator is unique at the highest k-level, 
which produces v*(k). For each level m, m < k, the 
confidence confpi on the values vi are computed 
according to (3), where Nm is the number of attributes of 
the m-level rule, i =1, .., Nm, p ∈ P(m). Hence, the fuzzy 
controller applies fuzzy inference at level k.  

Three fuzzy sets Al characterize the Prob(p) for each 
probability value through a set of linguistic terms l ∈ 
{high, medium, low} (see Figure 3). A low Prob(p) 
denotes that the concluded context derives from a low 
probability of observation while, a high Prob(p) denotes 
that a high value of confidence is assigned on the 
observation of p. A medium Prob(p) denotes that one is 
not sufficiently certain or uncertain about the 
observation of p. Similarly, two fuzzy sets Cl 
characterize the confidence values confp through a set of 
linguistic terms l ∈ {high, low} (see Figure 3). A low 
confp denotes that the concluded p is computed with a 
low degree of confidence i.e., low reliability on sensor 
readings. A high confp indicates that, p derives from 
highly reliable sources. A fuzzy implication F is a map 
⇒ : [0, 1] × [0, 1] →[0, 1] of the form x ⇒ y ≡ ¬x ∨ y, 
where x, y are fuzzy sets and ∨ is a triangular 
conjunctive norm (e.g., the max-operator) and ¬ is a 



negation (e.g., ¬x = 1-x). Hence, x ⇒ y = max((1-x), y). 
F is applied over the Al and Cl fuzzy sets resulting to the 
possibilistic value y = Pos(p(t)). F corresponds to three 
fuzzy sets Yl describing a low, medium and high 
confidence probability Pos(p(t)), l ∈ {high, medium, 
low} (see Figure 3). A fuzzy rule-base (see Figure 4) is 
constructed involving the Al, Cl and Yl fuzzy sets with 
their corresponding linguistic terms for Prob(p), confp 
and Pos(p(t)). The appropriate fuzzy value of y is then 
represented by the fuzzy set Y(y) (see Table I(a)) 
depending on the input (Prob(p), confp). Table I(b) 
depicts the concluded situational context based on the 
fuzzy inference of the confidence on sensor readings and 
the probabilistic fusion.  

The fuzzy inference results to the fuzzy set Y(y), 
which is defuzzified, and then a crisp value of Pos(p(t)) 
is generated at time t. The fuzzy inference rules for 
reasoning about the probabilistic fusion and sources 
confidence are illustrated in Figure 4, including 
concentration (very) and dilution (somewhat) fuzzy set 
modifiers. We call such inference as reliability-based 
probabilistic context fusion, which corresponds to the 
enhancement of the probabilistic fusion for p produced 
by the equation in Table I(b). The fuzzy inference rules 
(see Figure 4) do not describe the situational context in 
which the probability and the confidence of the sources 
assumes simultaneously low values, i.e., such rule could 
be “if Prob(p(t)) is low and confp is low then Pos(p(t)) is 
high”. Instead, the confidence probability (Pos(p)) 
depends only on the value of the probability Prob(p) 
(see the first rule in Figure 4). We exclude such rule 
from the proposed inference because another more 
improved reasoning formula has to be asserted (e.g., 
modus tollens logic1). Figure 5 depicts the behavior of 
the fuzzy inference rules. Evidently, when the degree of 
confidence assumes a zero value, which means that, the 
sensors readings are not reliable then, the confidence 
probability Pos(p) assumes the value 0.5, given the 
highest probability Prob(p). This implies that, the 
system is equally certain and uncertain when the fusion 
corresponds to an unreliable observation of context data. 
It should be noted that, the fuzzy sets can be either 
represented by human expert knowledge or derive from 
learning techniques, like neuro-fuzzy classifiers [6]. 

Table I (a) fuzzy set of the context fusion, (b) output of the fuzzy 
inference 

Y(y) = ∨1≤i≤m [Cli(Prob(p(t))) ∧ Ali(confp) ∧ Yli(y)]  (a) 
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1 Modus ponens implies the following statement: ((p → q ∧ p) → q), whilst 
modus tollens implies: ((p → q ∧ ¬q) → ¬p) 
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Figure. 2. Inference structure for reliability-based probabilistic 

context fusion. 
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Figure. 3. Membership functions for the fuzzy sets of Prob(p(t)), 

confp and confidence probability Pos(p(t)). 

if Prob(p(t)) is low then Pos(p(t)) is low
if Prob(p(t)) is medium and confp is low then Pos(p(t)) is very low
if Prob(p(t)) is medium and confp is high then Pos(p(t)) is somewhat high
if Prob(p(t)) is high and confp is low then Pos(p(t)) is medium
if Prob(p(t)) is high and confp is high then Pos(p(t)) is high

 
Fig.4. Fuzzy Inference Rules 
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Figure. 5. Behavior of the fuzzy inference rules. 

5. Experimental Evaluation 
5.1. Experiment Setup 

The evaluation of the reliability-based probabilistic 
fusion based on DBNs is performed using two 
technologies for indoor location estimation of a user: 
Wi-Fi Access Points (AP) and Infrared (IR) Beacons. In 
the following paragraphs, the terms situational context 
and location of the user are used interchangeably. The 
experimental setup was the 2-floor building of the 
Department of Informatics & Telecommunications 
(University of Athens, Greece). Each floor has 
dimensions of 30x100 meters and we used M = 35 
symbolic locations (e.g., entrance, research room, 
corridors). The DBN that resulted under the previously 
described setup is an instance of the DBN depicted in 
Figure 1. During the DBN training phase, a sequence 
(number of samples-measurements) for all locations was 



compiled and fed to the system. According to the 
evaluation scenario, a Personal Digital Assistant (PDA) 
was equipped with sensors for Infrared Radiation 
detection (IR port) and Received Signal Strength (RSS) 
measurements (Wireless LAN adapter). Context values 
(sensor readings) were recorded every second. The 
context p = user is located in corridor is formatted as 
follows: AP1_RSS is –60 dBm ∧ IRB1 is visible ∧ 
AP3_RSS is -30dBm, where AP1_RSS, IRB1 and 
AP3_RSS are attributes that conclude p. 

 
5.2. Instantiating the Reliability of Sources  

In order to quantify the reliability hi for each sensor Si, 
we used the probability distributions on diverse locations 
L for each sensor (see Table II) derived from the training 
phase of the DBN. It is obvious that, if the number of 
sample values (measurements) of a sensor during the 
training phase were distributed equally between lower 
and highest value for a location L, the probabilities in the 
distribution (for that specific location) would be also 
equally distributed. The condition of equally distributed 
probabilities does not offer any real information from 
the sensor since every value v has approximately equal 
probability to appear. In order to obtain better results in 
location estimation, the samples should not be equally 
distributed. Let V(Li), i = 1, …, M, be the discrete 
random variable which takes values from the column Li 
of a probability distribution table (see Table II). M is the 
number of symbolic locations. Once the probability for a 
location Li is equally distributed to all sensed values vj, j 
= 1, …, k, i.e., V(Li) = k-1 and k is the number of the 
sensed values, then, this means absolute ignorance on 
those sensed values. Hence, the higher the variance σ2 of 
the random variable V(Li) the more information we 
obtain from a sensor for the specific location Li (i.e., the 
sensor readings appear more reliable). The reliability h 
for a sensor is defined in (7) by calculating the mean 
value of all variances for each location. β in (7) is a 
normalizing constant since h ∈ [0,1]. IR Beacons appear 
more reliable on location estimation than WLAN APs. 
Intuitively, this is considered correct as IR Beacons have 
shorter range of emission thus improving the accuracy of 
the estimated location. 
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Table II. Probability distribution for the sensor AP1 
Value/Location L1 L2 … LM

 v1 0.5 0.0 … 0.1
 v2 0.3 0.8 … 0.1 
 … … … … … 
 vk 0.0 0.0 … 0.05 

 
5.3. Reliability-based Fusion Evaluation 

 

The experiments were performed for a week and at 
different hours of a day in order to have a clear image of 
the system’s performance. The system computes the 
probabilities for each location and the estimated location 
of the user is the location with the maximum confidence 
probability, Pos(p(t)). Figure 6(a) illustrates the 
confidence probability for the fusion techniques: (i) 
probabilistic fusion using static Bayesian Networks 
(BN), (ii) probabilistic fusion using Dynamic Bayesian 
Networks (DBN) and (iii) reliability-based probabilistic 
fusion using DBN (RDBN). In the first case (static BN), 
we do not take into consideration the previous location 
of the user at time t –1 for the estimation of the current 
location at time t. The mean value of confidence 
probability is 73%. Through the use of DBN (second 
case), the mean value of probability increases to 85%. 
Finally, in the third case, where the reliability of sources 
is taken into account, the confidence probability reaches 
to 91%. Obviously, the confidence probability assumes 
better values, i.e., the system is sufficiently certain in 
order to infer context. 
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Figure. 6. (a) Mean confidence probability, (b) Availability of the 
system using (i) probabilistic fusion based (ii), reliability-based 

probabilistic fusion. 

The fusion based on fuzzy inference assumes better 
performance when the probability value assumes values 
close to 0.5, i.e., the system is not sufficiently certain 
about the inferred context. Specifically, the degree 
confidence of sources supports the probabilistic fusion 
process to be either more certain about a situational 
context conclusion or more certain on the fact that the 
concluded context is not observed. This means that, the 
proposed context fusion uses fuzzy inference rules in the 
following deductive logic formula, that is, p → q and ¬p 
→ ¬q, where p and q is contextual attribute and 
situational context, respectively. Hence, if p is observed 
(probable) with a high value of confidence then, q is also 
observed with a high value confidence. On the other 
hand, if p is not observed (i.e., not probable and / or low 
confidence of sources) then, q is not sufficiently 
concluded. At this point, we quote the definitions of 
accuracy and availability, the most important features of 
a positioning system: 
¾ accuracy denotes the distance within which the system 

has the ability to locate a user, e.g., 1-5 meters, and, 



¾ availability denotes the percentage of time the system 
provides a specific accuracy, e.g., 80% of the time the 
system provides accuracy 1-5 meters. 

The confidence probability about a location affects the 
availability of a positioning system. Figure 6(b) depicts 
the availability of the system for accuracy less the 5 
meters using the techniques: (i) probabilistic fusion 
using DBN and, (ii) reliability-based probabilistic fusion 
using DBN. In the first case, the availability of the 
positioning system was 82 %. Conversely, the 
incorporation of the reliability h of sources (sensors) 
resulted to availability of 91 %. It is obvious that, the 
reliability of sources increases the certainty on the user 
position estimation, thus, improving the performance 
indicators of the positioning system. 

 

6. Prior Work  
The commercial system Ekahau [7] uses a calibration-

based approach for location estimation thus, the location 
is calculated by means of Received Signal Strength 
measurements at the client side. The location estimation 
discussed in [4] based on DBN utilizes data from sensors 
of different technologies to infer user location. 
Moreover, context-awareness is not only location 
estimation and spatial awareness. By fusing contextual 
data other than location information is deemed 
appropriate for a context-aware application. The work in 
[8] deals with situational context recognition through 
data fusion techniques. In addition, fuzzy inference for 
situational context recognition is discussed in [9] but the 
sources reliability in the fusion process is not taken into 
account. Moreover, context estimation using Naïve-Bays 
classification is discussed in [10] without dealing with 
the imprecise nature of context. Finally, Location Stack 
[11] employs multiple sensor readings for location 
estimation.  

 

7. Conclusions and Further work 
In this paper, we present a model for context fusion, 

which exploits data from sensors or lower level context 
in order to estimate the current user context. We 
extended the work in [7], by taking into consideration 
the reliability of sources. Along with sensor data, the 
inferred context and the confidence of the sources are 
counted in the fusion process. Fuzzy inference rules are 
used in order to infer a more elaborated and holistic 
fusion result based on the probabilistic distribution of 
the situational context. The experimental evaluation of 

the proposed model proved its capability for context 
fusion. In addition, a method for calculating the degree 
of reliability of sources is introduced. According to such 
method, which is based on statistical quantities, we 
estimate the reliability of each sensor based on the real 
information that provides for every location. 

Besides context representation, fusion, and inference, 
the need for adaptive intelligent applications is 
extremely important in a pervasive computing 
environment. Specification of temporal relationships 
between contextual attributes in context fusion is 
significant where applications and devices should be 
coordinated according to the current context of multiple 
users. A system that infers multiple simultaneous pieces 
of situational context from the fusion of diverse 
attributes is very important. Our research is based on the 
integration of additional information, e.g., sensor 
working time, to the estimation of the reliability of a 
sensor.  
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